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Abstract 
Stability theory plays a central role in system engineering, especially in the field of control 

systems and automation with regard to both dynamics and control. In this paper, stability 

and Hopf bifurcation analysis of Maxwell-Bloch equations were considered. By the aid of 

divergence test, it was proved that the system is dissipative. Steady state points of the 

equations were determined. The equations were linearized using Jacobian matrix about each 

equilibrium points. The local stability condition of each critical point was proved by using 

Routh- Huwertiz stability criteria. By the aid of Lyapunov theorem, equilibrium point one 

was proved to be globally asymptotically stable with some specific condition on pumping 

energy parameter. Furthermore, the result of Hopf bifurcation revealed that the system 

doesn’t undergo Hopf bifurcation at equilibrium point one by any choice of pumping energy 

parameter and with some specific conditions the system undergoes Hopf bifurcation about 

the two remaining equilibrium points for a certain value of pumping energy parameter. 

Finally, in order to verify the applicability of the result two supportive examples were solved 

and MATLAB simulation was implemented to support the findings of the study. 

Key words: Global stability; Hopf bifurcation; Local stability; Lyapunov theorem; Maxwell 

-Bloch equation; Routh- Huwertiz stability criteria. 

 

INTRODUCTION 

Maxwell-Bloch equations are set of coupled ordinary differential equations, which form the 

foundation of classical electromagnetism, classical optics and electric circuits together with 

the Lorenz force law. The equations also provide mathematical model for electric, optical 

and radio technologies, such as power generation, electric motors, wireless communication, 

etc (Maxwell, 1892).  

 

The Maxwell-Bloch equations widely used in non-linear optics in general and to model 

quantum cascade lasers (QCL) (Jirauschek and Kubis, 2014). These model equations are a 

system of non-linear ordinary differential equations which plays a prominent role in the field 

of non-linear optics. Non-linear evolution equations have attracted a lot of attentions since 

they are able to describe the non-linear phenomena in many fields of sciences and 

Engineering (Ablowity and Clarkson, 2004).  

 

Self-induced transparency (SIT) phenomenon plays a role in overcoming the attenuation in 

the optical communication systems.Therefore, scholars or researchers have pointed out the 

reduced Maxwell-Bloch equations can be applied to get for the phenomenon of self-induced 

transparency (We and Zhang, 2016). In general, mathematical models of Maxwell-Bloch 

equations are used in Physics, Chemistry, Biology, Engineering disciplines and others 

related sciences. In 1965, Tito Arecchi and Rodolfo Bonifacio of Milan discovered the 
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Maxwell-Bloch equations which are a system of non-linear ordinary differential equations of 

the form: 

 

 

 

1

2

, (1.1)

1

dx
k y x

dt

dy
r xz y

dt

dz
r z xy

dt
 

 

 

   

 

where the parameter   may be positive, negative or zero, 1,k r and 2r are positive 

parameters.  is a pumping energy parameter, k  is the decay rate in the laser cavity due to 

beam transmission, 1r  is the decay rate of the atomic polarization, 2r  is the decay rate of the 

population inversion, x is the dynamics of the  electric field, y is Atomic polarization  and 

z  is the population inversion.  

Non-linear mathematical models of real-world phenomena that are formulated in terms of 

ordinary differential  equations as in Eq. (1.1)  are not easy to directly solve for their 

solution and hence it is necessary to use qualitative approaches, such as stability and 

bifurcation analysis, to investigate their solution behaviors.  In scientific fields as diverse as 

fluid mechanics, electronics, chemistry and  theoretical ecology, there is the application of 

what is referred to as bifurcation analysis; the analysis of a system of non-linear ordinary 

differential equations  under  parameter variation (Blanchard et al., 2006). 

 

Hopf bifurcation is a local bifurcation in which a fixed point of a dynamical system loses 

stability as a pair of complex eigenvalues of linearized system crosses the imaginary axis of 

the complex plane.  Hassard et al. (1981) studied the direction of Hopf bifurcation and the 

stability of the bifurcating periodic solutions by applying the normal form theory and the 

center manifold theorem. Nijamuddin and Santabrata (2015) proposed the stability and 

bifurcation analysis of three species competitive food chain model system incorporating 

prey-refuge and this study showed that competition among predators could be beneficial for 

predators. Tee and Salleh (2016) investigated Hopf bifurcation of non-linear modified 

Lorenz system using normal form theory that was the technique used in Hassard et 

al.(1981). Algaba et al.(2016) studied the local bifurcations of equilibrium in the Lorenz 

system, when the parameters are allowed to take any real value has been successfully 

completed in the case of the pitchfork and Hopf bifurcations. Furthermore, Yang et al. 

(2017) described chamostat model which involve control strategy with threshold window are 

analyzed. They investigated the qualitative analysis such as existence and stability of 

equilibrium points of the system and proved that pseudo-equilibrium cannot coexist.   

 

Recently, Pijush et al.(2018) investigated the stability and bifurcation analysis of three-

species food chain model with fear and they concluded that chaotic dynamics can be 

controlled by the fear factors. Most recently, Makwata et al.(2019) investigated stability and 

bifurcation analysis of fishery model with allee effects and they obtained the three different 

equilibrium solutions as one being stable and with two being saddles.  

 

However, there is paucity of information with regard to Stability and Hopf Bifurcation 

analysis of Maxwell-Bloch equations in the existing literature. Therefore, the main objective 
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of this paper is stability and Hopf Bifurcation analysis of Maxwell-Bloch equations given by 

equation (1.1) 

 

. 

RESULT  
Dissipative or Conservative of the System 
 Consider system (1.1) given by 

 

 

 

1

2 1

dx
k y x

dt

dy
r xz y

dt

dz
r z xy

dt
 

 

 

   

 

Let 

 

1

2 1

3 2

( )

( ) (2.1)

( 1 )

f k y x

f r xz y

f r z xy 

 

 

   

 

From the system (2.1), 

 
     1 2 3

1 2

, , , , , ,
, ,

f x y z f x y z f x y z
k r r

x y z

  
     

    

 
     

 

1 2 3

1 2

, , , , , ,
. , ,

f x y z f x y z f x y z
f x y z

x y z

k r r

  
   

  

  

 

1 2

1 2

. ( )

( )

dD
fdD k r r dD

dt

dD
k r r D

dt

     

   

 
 

 1 2

1
dD k r r dt

D
     

 1 2

1
dD k r r dt

D
      

 1 2

0

k r r tD D e
  



 D is decreasing exponentially 

Therefore, the system (1.1) is dissipative. 

Equilibrium Points of the System 

To find the equilibrium point, equate the system (1.1) with zero and upon simplification the 

following three equilibrium points were obtained. 

    1 20,0, 1 , 1, 1,1E E      and  3 1,1,1E   
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Local Stability Analysis 

Linearizing system (1.1) at each equilibrium points and state the local stability conditions of 

the system. The Jacobian matrix of the system (1.1) is: 

1 1 1

2 2 2

0k k

A r z r r x

r y r x r 

 
 

  
    

 

The Jacobian matrix evaluated at the first equilibrium point 

 

 1 0,0, 1E   is  1 0,0, 1J A E   
 

   1 1

2

0

1 0 2.2

0 0

k k

J r r

r



 
 

   
  

 

The characteristic equation for equation (2.2) is 0J mI   

 

 1 1

2

0

1 0 0

0 0

k m k

J mI r r m

r m



 

     

 

 

   3 2

1 2 2 1 2 1 1 2 0m k r r m kr r r kr m kr r          

 

 

 3 2

1 2 3 0 , 2.3m a m a m a     

 

where 

 
1 1 2

2 2 1 2 1

3 1 2

2.4

a k r r

a kr r r kr

a kr r





  

  

 

 

 

Applying Routh-Hurwitz stability criterion for characteristic equation  2.3

 
1 0  

1 1 2 0a k r r    , since, 1 2, ,k r r  are positive parameters 

     1 2 3 2 1 2 1 2 1 2 1 12 0a a a kr k r r rr r r k r k r          

3 1 2 0a kr r     

 

If    

 0 2.5   

 

As a result, the system (1.1) is locally asymptotically stable at the equilibrium point   
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 1 0,0, 1E  
 
provided that condition (2.5) is satisfied. 

 

The Jacobian matrix evaluated at the second equilibrium point  2 1, 1,1E     is 

 2 1, 1,1J A E     

 

 1 1 1

2 2 2

0

2.6

k k

J r r r

r r r 

 
 

   
  

 

The characteristic equation for equation (2.6) is 0J mI   

 

1 1 1

2 2 2

0

0

k m k

J mI r r m r

r r r m 

 

     

 

 

   3 2

1 2 2 1 2 1 2 1 22 0m k r r m kr r r r r m kr r          

 

 3 2
1 2 3 0,                                                                           2.7m b m b m b   

 
where 

 

 
1 1 2

2 2 1 2 1 2

3 1 2

2.8

2

b k r r

b kr r r r r

b kr r





  

  



 

The Routh array or Routh-Hurwitz table is  

 

23

1 32

1 2 31

10

3

1 0

0

0

b
m

b b
m

b b b
m

b
m

b



 
Applying Routh-Hurwitz stability criterion for characteristic equation (2.7) 

 

1 0

 
1 1 2 0b k r r    , since, 1 2, ,k r r  are positive parameters

    1 2 3 2 1 2 1 2 1 2 1 2 1 22 0b b b kr k r r rr r r r r krr             

  3 1 22 0b krr    



Ethiop. J. Educ. & Sci.                         Vol. 17,   N0. 2                            March, 2022     64 

If 

  0                 2.9   

 

Therefore, the system (1.1) is locally asymptotically stable at the equilibrium point  

 2 1, 1,1E   
 
provided that condition (2.9) is satisfied. 

 

The Jacobian matrix evaluated at the third equilibrium point 

 3 1,1,1E   is  3 1,1,1J A E 
 

 

 1 1 1

2 2 2

0

2.10

k k

J r r r

r r r 

 
 

  
    

The characteristic equation for equation (2.10) is 0J mI 

 

1 1 1

2 2 2

0

0

k m k

J mI r r m r

r r r m 

 

    

   
 

 

   3 2

1 2 2 1 2 1 2 1 22 0m k r r m kr r r r r m kr r          

 

 3 2
1 2 3 0,                                    2.11m c m c m c   

 

where 

 
1 1 2

2 2 1 2 1 2

3 1 2

2.12

2

c k r r

c kr r r r r

c kr r





  

  



 

The Routh array or Routh-Hurwitz table is: 

   

23

1 32

1 2 31

10

3

1 0

0

0

c
m

c c
m

c c c
m

c
m

c



 

 Applying Routh-Hurwitz stability criterion for characteristic equation (2.11) 

 
1 0  

1 1 2 0c k r r    , since, 1 2, ,k r r  are positive parameters 

   1 2 3 2 1 2 1 2 1 2 1 2 1 22 0c c c kr k r r rr r r r r krr             

 

3 1 22 0c kr r   if  0 2.13   
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As a result, the system (1.1) is locally asymptotically stable at the equilibrium point  

 3 1,1,1E 
 
provided that condition (2.13) is satisfied. 

Global Stability Analysis of the System 

To analyze the global asymptotic stability of non-linear system (1.1)
  

Let    
22 2

1

1 2

1 1 1
, , 1v x y z x y z

k r r
      be candidate Lyapunov function at 

equilibrium point 
 

 1 0,0, 1E   , then:-
 

1.    1 1, , 0,0, 1 0v x y z v        

2.  1 , ,v x y z >0 for all     , , , ,x y z D x y z     

Hence,  1 , ,v x y z is positive definite function. 

3.        1 1 1 1, , , , , , , ,
dv v dx v dy v dz

x y z x y z x y z x y z
dt x dt y dt z dt

  
  
  

 

   1 , , 2 , ,
dv

x y z g x y z
dt

   

where

 

  2 2 2 2 2, , 2 2 2 1g x y z x y z xy xyz xyz xy xy z z                   

Construct Hessian matrix for  , ,g x y z  at the first equilibrium point  1 0,0, 1E    to 

check  

whether Hessian matrix is positive definite. 

 1

2 2 0

2 2 0

0 0 2 0,0, 1

H

E







  
 

   
    

 

All leading principal minors of Hessian matrix at  1 0,0, 1E    are: 

1 2D  ,  2

2 2
4

2 2
D


 



 
   
 

  

and  3

2 2 0

2 2 0 2 4

0 0 2

D



  

 

        

The leading principal minors are:  

 
1

2

2 0,

4 0,

D

D  

 

   
 

 3 2 4 0D       If    4,0 2.14    

The Hessian matrix is positive definite if condition (2.14) is satisfied. 
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So that  1 , ,
dv

x y z
dt

 is negative definite function when condition (2.14) is satisfied. 

 
 

 
 

2 2
2

1
, , , ,

1 2

1
4. lim , , lim 1

x y z x y z

x y
v x y z z

k r r


 

 
       

 

 

 1 , ,v x y z is radially unbounded. 

As a result, the equilibrium point  1 0,0, 1E   is globally asymptotically stable by 

Lyapunov Stability theorem if condition (2.14) is satisfied. 

Hopf Bifurcation Analysis of the System 

Suppose that the system (1.1) has critical point for some parameter 
0   has a simple pair 

of pure imaginary eigenvalues and no other eigenvalues with zero real part. Furthermore, 

Let Re 0
d

dm

 
 

 
, then the Hopf bifurcation occurs at 0  . 

Let the characteristic equation (2.3) has pure imaginary eigenvalues  0m i     at 

0   

     

 

3 2

1 2 3

3 2

1 2 3

3 2

2 1 3

0

0

0

m a m a m a

i a i a i a

a i a a

  

  

   

   

    

 

Equating the real and imaginary parts with zeros yields. 

 

 1 2 3 0 2.15a a a 

 

Substituting equation (2.4) into equation (2.15) to compute for parameter  yield
 

  1 2 2 1 2 1 1 2 0k r r kr rr kr krr      
 

 
 2 1 2

1

2.16
r k r r

kr


 


 

Plugging equation (2.16) into equation (2.4) 

 

 

 

 

1 1 2

2
2 2

2 1 2
3 1 2

1

2
2 1 2

2.17

a k r r

a r

r k r r
a kr r

kr

r k r r

  

 

  
    

 

   

  
Substituting equation (2.17) into equation (2.3) yields.
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 1 1 2m k r r    or
2 2

2m r  

2,3 2m r   

Since 2,3m  are not pure imaginary eigenvalues, then one of Hopf bifurcation condition is 

not satisfied. 

As a result, the system (1.1) does not undergo Hopf bifurcation at equilibrium one by any 

choice of pumping energy parameter. 

Let the characteristic equation (2.7) has pure imaginary eigenvalues  0m i     at 

0   

3 2

1 2 3 0m b m b m b   
 

     

 

3 2

1 2 3

3 2

2 1 3

0

0

i b i b i b

b i b b

  

  

   

    
 

Equating the real and imaginary parts with zeros yields. 

 

 1 2 3 0 2.18b b b 

 

Plugging equation  2.8 into equation  2.18  to calculate for   

  1 2 2 1 2 1 2 1 22 0k r r kr rr rr krr        

 

  

 
 1 1 2

1 1 2

2.19
k r k r r

r r r k


   


 

 

Substituting equation (2.19) into equation (2.8) 

 
 

  

1 1 2

2 1
2

1 2

2 1 1 2
3

1 2

2
2.20

2

b k r r

kr k r
b

r r k

kr k r k r r
b

r r k

  

 


 

   


 

 

 

 
 2 2 1

1 2

2kr k r

r r k


 


 

 

 
 

2 1

1 2

2kr k r

k r r



 

 
if  1 2 2.21k r r   

 Substituting equation (2.20) into equation (2.7)  
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 1 1 2m k r r    or

 2 2 1

1 2

2kr k r
m

r r k




 
 

 
 2 1

2,3

1 2

2kr k r
m

r r k


 

 
 

Since 1 2k r r   

 
 

 
 

2 1

2,3

1 2

2 1

1 2

2

2

kr k r
m

k r r

kr k r
i

k r r

 
 

 




 

 

Since 2,3m  are pure imaginary eigenvalues, then one of Hopf bifurcation condition is 

satisfied if condition (2.21) is satisfied. 

Next compute the dm

d
 from the characteristic equation of the Jacobian matrix for equation 

(2.7)  

 

   
 

1 2 1 2

2

1 2

1 2

1 2

1 2 1 2

2

1 2

1 2 1 2

2

3 2

3 2

2

3 2

2

dm rr m krr

d m b m b

d dm m b m b

dm d krr r r m

i b i b

krr r r i







 





 
  

  

   
    

   

  
  
 
 

 

 
 

 

 

2 2

2 1 2 1

2 2 2

1 2 1 2 2

2 3 4 2
Re 0

4 4

k b k b b k bd

dm rr k r r k b

 



   
   

  

 

Since Re 0
d

dm

 
 

 
, then second condition of Hopf bifurcation is satisfied if condition (2.21) 

is satisfied. As a result, the system (1.1) under goes Hopf bifurcation at

  
 

1 1 2

1 1 2

k r k r r

r r r k


   


 
 

when condition (2.21) is satisfied. 

Suppose the characteristic equation (2.11) has pure imaginary eigenvalues  

 0m i     at  

0   

3 2

1 2 3 0m c m c m c     
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     

 

3 2

1 2 3

3 2

2 1 3

0

0

i c i c i c

c i c c

  

  

   

    
 

Equating the real and imaginary parts with zeros yields. 

 

 1 2 3 0 2.22c c c   

 

Plugging equation (2.12) into equation (2.22) to compute for 

   1 2 2 1 2 1 2 1 22 0k r r kr rr rr krr         

  

 
 1 1 2

1 1 2

2.23
k r k r r

r r r k


   


 
 

Substituting equation (2.23) into equation (2.12)  

 

 
 

  

1 1 2

2 1
2

1 2

2 1 1 2
3

1 2

2
2.24

2

c k r r

kr k r
c

r r k

kr k r k r r
c

r r k

  

 


 

   


 

 

 2 2 1

1 2

2kr k r

r r k


 


 

 

 
 

2 1

1 2

2kr k r

k r r



 

 
if  1 2 2.25k r r   

Substituting equation (2.24) into equation (2.11)  

 1 1 2m k r r    or
 2 2 1

1 2

2kr k r
m

r r k




 
 

 2 1

2,3

1 2

2kr k r
m

r r k


 

   

Since 1 2k r r   

 
 

 
 

2 1

2,3

1 2

2 1

1 2

2

2

kr k r
m

k r r

kr k r
i

k r r

 
 

 




 
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Since 2,3m  are pure imaginary eigenvalues, then one of Hopf bifurcation condition is 

satisfied if condition (2.25) is satisfied. Next compute the
dm

d
 from the characteristic 

equation of the Jacobian matrix for equation (2.11)  

   

 

1 2 1 2

2

1 2

1 2

1 2

1 2 1 2

2

1 2

1 2 1 2

2

3 2

3 2

2

3 2

2

r r m kr rdm

d m c m c

m c m cd dm

dm d kr r r r m

i c i c

kr r r r i







 





 
  

  

   
    

   

  
  
 
 

 

 
 

 
 

2

2 1 1 2 1 2

1 2 1 2 1 2 1 2

2 2 2

2 1 2 1

2 2 2 2

1 2 1 2

3 2 2

2 2

2 3 3 4

4 4

c c i kr r r r i

kr r r r i kr r r r i

k c k c c c k i

r r k r r k

  

 

   

 

   
  

  

   
 

 

 

 
 

 

 

2 2

2 1 2 1

2 2 2

1 2 1 2 2

2 3 4 2
Re 0

4 4

k c k c c k cd

dm rr k r r k c

 



   
   

  

 

Since Re 0
d

dm

 
 

 

, then it proves that the second condition of Hopf bifurcation is satisfied if 

condition (2.25) is satisfied.  

Therefore, the system (1.1) undergoes Hopf bifurcation at
  

 
1 1 2

1 1 2

k r k r r

r r r k


   


 
 

when condition (2.25) is satisfied. 

 

Supportive Examples 

Example 1. Consider the parameters values with 1 2 1, 4, 2r r k     , then the 

system (1.1) becomes 

 

4( )

( )

(3 2 )

dx
y x

dt

dy
xz y

dt

dz
z xy

dt

 

 

  

 

Dissipative or Conservative of the System  
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Let 
1

2

3

4( )

( )

(3 )

f y x

f xz y

f z xy

 

 

  

 

31 24 , 1 , 1
ff f

x y z

 
     

  
 

The divergence of the vector field   1 2 3
1 2. , , ( ) 6

f f f
f x y z k r r

x y z

  
         

  
 

6

0

tD D e  

D is decreasing exponentially  

Therefore, the system is dissipative.  

Equilibrium points of the system, 

Three equilibrium points of the system are as follows:- 

   

   

   

1

2

3

0,0, 1 0,0,3

1, 1,1 1, 1,1

1,1,1 1,1,1

E

E

E

  

     

 

 

 

Local Stability Analysis 

The Jacobian matrix evaluated at the first equilibrium point

 

 1 0,0,3E  is  1 0,0,3J A E 

 

4 4 0

3 1 0

0 0 1

J

 
 

  
  

 

The characteristic equation of the Jacobian matrix at  1 0,0,3E   is 0J mI   

3 26 3 8 0m m m     where 1 2 36, 3, 8a a a      

Applying Routh-Hurwitz stability criterion for characteristic equation of the Jacobian matrix 

at 

 1 0,0,3E 
 
equilibrium point one is unstable. The Jacobian matrix evaluated at the 

second equilibrium point  

  2 1, 1,1E    is  2 1, 1,1J A E     

4 4 0

1 1 1

2 2 1

J

 
 

   
    

The characteristic equation of the Jacobian matrix at  2 1, 1,1E      is  0J mI   

3 26 7 16 0m m m     where 1 2 36, 7, 16b b b    
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Applying Routh-Hurwitz stability criterion for characteristic equation of the Jacobian matrix 

at  2 1, 1,1E    , equilibrium point two is locally asymptotically stable.  

The Jacobian matrix evaluated at the third equilibrium point  3 1,1,1E   is 

 3 1,1,1J A E   
4 4 0

1 1 1

2 2 1

J

 
 

  
    

 

The characteristic equation of the Jacobian matrix at  3 1,1,1E   is 0J mI   

3 26 7 16 0m m m    where 1 2 36, 7, 16c c c  
 

Applying Routh-Hurwitz stability criterion for characteristic equation of the Jacobian matrix 

at

  3 1,1,1E  , equilibrium point three is locally asymptotically stable.  

 

MATLAB Simulation 

The following diagrams indicate MATLAB simulation that shows stability of the 

equilibrium point. 

 
Figure 1: The graph of system versus time about equilibrium point. 

0 5 10 15

Time(s)

-15

-10

-5

0

5

10

15

S
y
s
te

m

MATLAB Simulation for Example 1.

x(t)

y(t)

z(t)
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Figure 2: Phase Portrait of the system about the equilibrium point. 

 

 

DISCUSSION 

Figure 1 indicates that the graph of the system versus time converges to the equilibrium 

point. Figure 2 indicates phase portrait of the system in which the trajectory of the system 

converges to equilibrium point which in one ways shows the stability of the equilibrium 

point.  

Hopf Bifurcation Analysis of the System, 

Suppose the characteristic equation at  1 0,0,3E   has pure imaginary  

eigenvalues  0m i     at 0  , then 
3 2

1 2 3 0m a m a m a     

Where 
 2 1 2

1

3

2

r k r r

kr


 
   

 

 

1 1 2

2

2 2

2

3 2 1 2

6

1

6

a k r r

a r

a r k r r

   

   

     

 

 

  

3 2

2

6 6 0

6 1 0

m m m

m m

   

  

 

1 6m   or 2,3 1m    

-20

15

-15

-10

10

-5

10

0

z
(t

)

8

5

5

Phase Portriat for Example 1

6

y(t)

10

15

4

x(t)

0

20

2
0-5

-2
-10 -4
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Since 2,3m  are not pure imaginary eigenvalues, then one of Hopf bifurcation condition is 

not  satisfied. As a result, the system does not undergo Hopf bifurcation at 3

2
  .  

Suppose the characteristic equation of the Jacobian matrix at  2 1, 1,1E     has pure  

imaginary eigenvalues  0m i     at 0  , then 
3 2

1 2 3 0m b m b m b     

Where  

  
 

1 1 2

1 1 2

15
k r k r r

r r r k


   
 

   

 

  

1 1 2

2 1

2

1 2

2 1 1 2

3

1 2

6

2
20

2
120

b k r r

kr k r
b

r r k

kr k r k r r
b

r r k

   

 
 

 

   
 

 
 

 
   

3 2

2

1 2,3

6 20 120 0

6 20 0

6 , 20

m m m

m m

m m i

   

  

   

 

Since 2,3m  are pure imaginary eigenvalues, then one of Hopf bifurcation condition is 

satisfied at 15  . 

Next compute the Re
d

dm

 
 
 

from the characteristic equation of the Jacobian matrix at  

 2 1, 1,1E     

 

 
2 1

2

1 2 2

4 2 20
Re 0

214

b k bd

dm rr k b

  
   

 

 

Since Re 0
d

dm

 
 

 

, then second condition  of  Hopf bifurcation is satisfied .  

As a result, the system
 
under goes Hopf bifurcation at 15  .

 Let the characteristic equation of the Jacobian matrix at  3 1,1,1E   has pure imaginary 

 
eigenvalues  0m i     at 0  , then 

3 2

1 2 3 0m c m c m c   

 

Where  

  
 

1 1 2

1 1 2

15
k r k r r

r r r k


   
 

   
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 

  

1 1 2

2 1

2

1 2

2 1 1 2

3

1 2

6

2
20

2
120

c k r r

kr k r
c

r r k

kr k r k r r
c

r r k

   

 
 

 

   
 

 
 

  

3 2

2

1 2,3

6 20 120 0

6 20 0

6 , 20

m m m

m m

m m i

   

  

   

 

Since 2,3m  are pure imaginary eigenvalues, then the condition one of the Hopf bifurcation 

is  

satisfied at 15  . 

Next compute the 
Re

d

dm

 
 
 

from the characteristic equation of the Jacobian matrix at

 3 1,1,1E   

 

 
2 1

2

1 2 2

4 2 20
Re 0

214

c k cd

dm rr k c

  
   

 

 

Since Re 0
d

dm

 
 

 

, then second  condition of Hopf bifurcation is satisfied .  

Therefore, the system
 
undergoes Hopf bifurcation at 15  .

 

Example 2. Consider parameters values with 
1 20.4, 0.2 , 0.1, 0.1k r r       , 

then the system (1.1) becomes  

0.4( )

0.2( )

0.1(0.9 0.1 )

dx
y x

dt

dy
xz y

dt

dz
z xy

dt

 

 

  
 

Dissipative or Conservative of the System 

 0.7

0 0

t cD D e D e   

D is decreasing exponentially  

Therefore, the system is dissipative. 

Equilibrium points of the system, 

 We end up with three equilibrium points of the system as follows:- 

   

   

   

1

2

3

0,0, 1 0,0,0.9

1, 1,1 1, 1,1

1,1,1 1,1,1

E

E

E

  

     

 
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Local Stability Analysis 

The Jacobian matrix evaluated at the first equilibrium point
 

 1 0,0,0.9E  is  1 0,0,0.9J A E 
 

 

0.4 0.4 0

0.18 0.2 0

0 0 0.1

J

 
 

  
    

The characteristic equation of the Jacobian matrix at equilibrium point 1E  is 0J mI 

 
3 20.7 0.068 0.0008 0m m m     where 

1 2 30.7, 0.068, 0.0008a a a    

Since there is no sign changes in the first column of Routh- Hurwitz table,  

equilibrium point one is locally asymptotically stable.  

The Jacobian matrix evaluated at the second equilibrium point  

 

 2 1, 1,1E    is  2 1, 1,1J A E     

0.4 0.4 0

0.2 0.2 0.2

0.01 0.01 0.1

J

 
 

   
    

 

 

The characteristic equation of the Jacobian matrix at equilibrium point 2E  is 0J mI 

 
3 20.7 0.058 0.0016 0m m m     where 

1 2 30.7, 0.058, 0.0016b b b   

 
Since there is sign changes in the first column of Routh- Hurwitz table, equilibrium point 

two is unstable. 

The Jacobian matrix evaluated at the third equilibrium point  3 1,1,1E  is  3 1,1,1J A E   

0.4 0.4 0

0.2 0.2 0.2

0.01 0.01 0.1

J

 
 

  
  

 

The characteristic equation of the Jacobian matrix at equilibrium point 3E  is 0J mI 

 
3 20.7 0.058 0.0016 0m m m     

where 

1 2 30.7, 0.058, 0.0016c c c     

Since there is sign changes in the first column of Routh- Hurwitz table, equilibrium point 

three is unstable. 

 

Global Stability Analysis of the System 

Let  
 

22 2

1

0.9
, ,

0.4 0.2 0.1

zx y
v x y z


    be candidate Lyapunov function at equilibrium point      

 1 0,0,0.9E  , then:-  
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1.    1 1, , 0,0,0.9 0v x y z v      

2.  1 , , 0v x y z  for all     , , , ,x y z D x y z     

Hence,  1 , ,v x y z is positive definite function. 

3.        1 1 1 1, , , , , , , ,
dv v dx v dy v dz

x y z x y z x y z x y z
dt x dt y dt z dt

  
  
  

 

 

   1 , , 2 , ,
dv

x y z g x y z
dt

   

Construct Hessian matrix for  , ,g x y z  at the first equilibrium point  1 0,0,0.9E   to 

check   

whether Hessian matrix is positive definite. 

    

 

 1

2 1.1 0.91 1.1 2 1.9 0

1.1 0.91 2 1.1 1.9 2 0

1.1 1.1 2 0 0 20,0,0.9

z y

H z x

y x E

      
   

        
        

 

All leading principal minors of Hessian matrix at  1 0,0,0.9E  are:- 

1 2D   ,  
2

2 1.9
0.39

1.9 2
D


 


 and 
3

2 1.9 0

1.9 2 0 0.78

0 0 2

D



    

Since the leading principal minors 
1 22 0, 0.39 0D D    and 

3 0.78 0D   , then the 

Hessian matrix is positive definite. If the Hessian matrix is positive definite, then 

 1 , ,
dv

x y z
dt

 is negative definite function.  

 
 

 

 
22 2

1
, , , ,

0.9
4. lim , , lim

0.4 0.2 0.1x y z x y z

zx y
v x y z

 

 
     

  

 

 1 , ,v x y z is radially unbounded.  

As a result, the equilibrium point  1 0,0,0.9E   is globally asymptotically stable by 

Lyapunov stability theorem. 

 

CONCLUSION 

In this paper, the Stability and HopfBifurcation analysis of Maxwell-Bloch equations were 

considered. The system is proved to be dissipative by the aid of divergence test. The result 

of the study revealed that equilibrium point one is stable and unstable for negative and 

positive value of pumping energy parameter, respectively. The remaining two equilibrium 

points are stable and unstable for positive and negative value of pumping energy parameter, 

respectively. By the aid of Lyapunov theorem, equilibrium point one was proved to be 

globally asymptotically stable with some specific interval of pumping energy parameter. 

Furthermore, the result of Hopf bifurcation analysis indicates that the system doesn’t 
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undergo Hopf bifurcation at equilibrium point one by any choice of pumping energy 

parameter. With some specific conditions, the system undergoes Hopf bifurcation about the 

two remaining equilibrium points for a certain value of pumping energy parameter. Finally, 

in order to verify the applicability of the result, two numerical examples were solved. 

MATLAB simulation was also implemented to support the findings of the study. 

REFERENCES 

Ablowitz, M. J. and Clarkson, P.A .(2004). Solitons, Non-linear Evolution Equations and 

Inverse Scattering (Cambridge: Cambridge University Press) 

Algaba, A., Domínguez-Moreno, M. C., Merino, M., & Rodríguez-Luis, A. J. (2016). 

Takens Bogdanov bifurcations of equilibria and periodic orbits in the Lorenz 

system. Communications in Nonlinear Science and Numerical Simulation, 30(1-3), 

328- 343. 

Arecchi, F. and Bonifacio, R. (1965). Theory of optical maser amplifiers, Journal of 

Quantum Electronics, 1(4), 169-178. 

Blanchard, P., Devaney, R.L. and Hall, G.R.(2006). Differential Equations, London, 

Thomson, 96-111, Israel. 

Wen, L., Zhang, H. (2016). Darboux transformation and soliton solutions of the (2 ++ 1)-

dimensional derivative nonlinear Schrödinger hierarchy. Nonlinear Dyn, 84, 863–

873.  

Hassard, B.D., Kazarinoff, N. D. and Wan, Y.H.(1981). Theory and Applications of Hopf 

Bifurcation, Cambridge University Press, Cambridge. 

Jiauschek, C. and Kubis, T.(2014). Modeling Techniques for quantum cascade Lasers, Appl. 

phys. 1(1), 011307. 

Makwata, H., Lawi, G., Akinyi ,C. and Adu, W.(2019). Stability and Bifurcation Analysis of 

a Fishery Model with Allee Effects, Mathematical Modeling and Applications, 

4(1), 1-9, India. 

Maxwell, J.C.(1892). A Treatise on Electricity and Magnetism. Oxford: Clarendon Press. 

Scotland. 

Nijamuddin, A. and Santabrata, C.(2015). Stability and bifurcation analysis of a three 

species competitive food chain model system incorporating prey refuge, 

International Journal of Ecological, Economics and Statistics, 36(2), ISSN 0973-

7537, India. 

 Pijush, P., Niklil, P., Sudip, S. and Joydev, C. (2018). Stability and Bifurcation Analysis of 

a Three-Species Food Chain Model with Fear, International Journal of Bifurcation 

and  Chaos,  28(1),1-20, India 

Tee, L.S. and Salleh, Z.(2016). Hopf bifurcation of a non-linear system derived from Lorenz 

system using normal form theory. International Journal of Applied Mathematics 

and Statistics,55(3),122-132. 

Yang, Z. J., Yang, Z. F., Li, J. X., Dai, Z. P., Zhang, S. M., & Li, X. L. (2017). Interaction 

between anomalous vortex beams in nonlocal media. Results in physics, 7, 1485-

1486. 

 

 


