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Abstract 

In this paper, refinement of generalized accelerated over relaxation (RGAOR) iterative 

method is presented based on the Nekrassov-Mehmke 1- method (NM1) procedure for 

solving system of linear equations of the form 𝑨𝒙 = 𝒃, where 𝑨 is a nonsingular real 

matrix of order 𝒏, 𝒃 is a given 𝒏 −dimensional real vector. The coefficient matrix 𝑨is 

split as in 𝑨 = 𝑻𝒎 − 𝑬𝒎 − 𝑭𝒎, where 𝑻𝒎 is a banded matrix of band width 𝟐𝒎 + 𝟏 and 

−𝑬𝒎 and −𝑭𝒎 are strictly lower and strictly upper triangular parts of the matrix 

𝑨 − 𝑻𝒎 respectively. The finding shows that the iterative matrix of the new method is the 

square of generalized accelerated successive over relaxation iterative matrix. The 

convergence of the new method is studied and few numerical examples are considered to 

show the efficiency of the proposed methods. As compared to generalized accelerated 

successive over relaxation (SOR2GNM1, SOR1GNM1), the results reveal that the 

present method (RSOR1GNM1, RSOR2GNM1) converges faster and its error at any 

predefined error of tolerance is less than the other methods used for comparison. 
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INTRODUCTION 

A collection of linear equations is called 

linear systems of equations. They involve 

same set of variables. Various methods 

have been introduced to solve systems of 

linear equations (Noreen, J., 2012 and 

Saeed, N.A., Bhatti, A., 2008). There is no 

single method that is best for all situations. 

These methods should be determined 

according to speed and accuracy. Speed is 

an important factor in solving large systems 

of equations because the volume of 

computations involved is huge. Another 

issue in the accuracy problem for the 

solutions rounding off errors involved in 

executing these computations. 

Systems of linear equations arise in a large 

number of areas both directly in modeling 

physical situations and indirectly in the 

numerical solutions of the other 

mathematical models. These applications 

occur in all areas of the physical, 

biological, social science and engineering 

etc.  The linear system problem is, “Given 

an n×n nonsingular matrix A and an n-

vector b, the problem is to find an n-vector 

x such that Ax=b”. The most common 

source of the above problem is the 

numerical solution of differential 

equations. A system of differential 

equations is normally solved by 

discretizing the system by means of finite 

difference methods. The efficiency of any 

method can be judged by two criteria 

namely, how fast it is i.e. how many 

operations are involved? And   how 

accurate is the computer solution? 

(Anamul, H., L. and Samira, B., 2014). 

Direct methods are not appropriate for 

solving large number of equations in a 

system, particularly when the coefficient 

matrix is sparse, i.e. when most of the 

elements in a matrix are zero (Noreen, J., 

2012 and Anita, H., M., 2002). In contrast,  

 

Iterative methods are suitable for solving 

linear equations when the number of 

equations in a system is very large.  

Iterative methods are very effective 

concerning computer storage and time 

requirements. One of the advantages of 

using iterative methods is that they require 

fewer multiplications for large systems.  In 

general, it can be easily realize that direct 

methods are not appropriate for solving 

large number of equations in a system 

when the coefficient matrix is sparse i.e. 

when most of the elements in a matrix are 

zero. On the other hand iterative methods 

are suitable for solving linear equations 

when the number of equations in a system 

is very large. Iterative methods are very 

effective concerning computer storage and 

time requirements. One of the advantages 

of using iterative methods is that they 

require fewer multiplications for large 

systems. Iterative methods are fast and 

simple to use when the coefficient matrix is 

sparse. Also these methods have fewer 

rounds off errors as compared to the direct 

methods. 
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Preliminaries 

Let us consider the linear system 𝐴𝑥 − 𝑏 = 0,  𝑑𝑒𝑡𝐴 ≠ 0 , or 

𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 +⋯+ 𝑎𝑖𝑛𝑥𝑛 − 𝑏𝑖 = 0, 𝑖 = 1,2, … , 𝑛                                                  1  

Suppose that the matrix 𝐴 is strictly diagonally dominant (SDD), i.e.,  

 𝑎𝑖𝑖  >   𝑎𝑖𝑗  

𝑛

𝑗≠𝑖

, 𝑖 = 1,2,3, … , 𝑛. 

Using the Nekrassov−Mehmke iteration scheme (Mehmke, R. and Nekrassov, P., 1892) 

the sequence of consecutive approximations  𝑥𝑖
(𝑘),  is computed as follows: 

𝑥𝑖
 𝑘+1 = − 

𝑎𝑖𝑗

𝑎𝑖𝑖
𝑥𝑗
 𝑘+1 −  

𝑎𝑖𝑗

𝑎𝑖𝑖
𝑥𝑗
 𝑘 +

𝑏𝑖
𝑎𝑖𝑖

,      𝑖 = 1,2, … , 𝑛
𝑛

𝑗=𝑖+1

𝑖−1

𝑗=1

                          2  

𝑘 = 0,1, 2, … 

The scheme in Eq. (2) is called the Nekrassov−Mehmke 1−method (NM1). In a number of 

cases the success of the procedures of type (2) depends on the proper ordering of the 

equations and 𝑥𝑖 , 𝑖 = 1, … , 𝑛 

In spite of this fact the following modification of the Nekrassov−Mehmke method is 

known (Faddeev, D. and Faddeeva, V., 1963): 

𝑥𝑖
 𝑘+1 = − 

𝑎𝑖𝑗

𝑎𝑖𝑖
𝑥𝑗
 𝑘 −  

𝑎𝑖𝑗

𝑎𝑖𝑖
𝑥𝑗
 𝑘+1 +

𝑏𝑖
𝑎𝑖𝑖

,      𝑖 = 𝑛, 𝑛 − 1,… ,1
                   

𝑛

𝑗=𝑖+1

𝑖−1

𝑗=1

  3  

𝑘 = 0,1, 2, … 

The Scheme in Eq. (3) is called the Nekrassov−Mehmke 2−method (NM2).  

The (NM2) –method does not possess better convergence in comparison with method 

(NM1). But under circumstances, if 𝐴 is positive definite then the Eigen−values of matrix 

𝐺 in the matrix equations 𝑥 = 𝐺𝑥 + 𝐶are real and this allows to apply different methods 

for improving rate of convergence (Faddeev, D. and Faddeeva, V.,1963). 

Let 𝐴 = (𝑎𝑖𝑗 ) be an 𝑛 × 𝑛 nonsingular matrix and 𝑇𝑚 =  𝑡𝑖𝑗   be a banded matrix of band 

width 2𝑚 + 1 is defined as  

𝑡𝑖𝑗 =  
𝑎𝑖𝑗  ,  𝑖 − 𝑗 ≤ 𝑚

0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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We consider the decomposition 

𝐴 = 𝑇𝑚 − 𝐸𝑚 − 𝐹𝑚  

Where −𝐸𝑚  and −𝐹𝑚  are strictly lower and strictly upper triangular parts of𝐴 − 𝑇𝑚 , 

respectively and they are defined as follows 

𝑇𝑚     =        

 
 
 
 
 
 
𝑎1,1 … 𝑎1,𝑚+1                               

⋮
𝑎𝑚+1,1

⋱
⋱

⋮
⋱

𝑎𝑛−𝑚,𝑛  

⋱
⋮

𝑎𝑛,𝑛−𝑚 ⋯
⋮

𝑎𝑛,𝑛  
 
 
 
 
 

, 

𝐸𝑚   =              

 
 
 
 
 
−𝑎𝑚+2,1 ⋱

⋮
−𝑎𝑛 ,1

⋱
… −𝑎𝑛−𝑚−1,𝑛       

 
 
 
 

 ,        

𝐹𝑚=          

 
 
 
 
 
 −𝑎1,𝑚+2

… −𝑎1,𝑛

⋱ ⋮
−𝑎𝑛−𝑚,𝑛 

 
 
 
 
 
 

 . 

Applying the Nekrassov−Mehmke 1-method (NM1) to the system in Eq. (1) with the 

decomposition  

𝐴 = 𝑇𝑚 − 𝐸𝑚 − 𝐹𝑚 , we have 

𝑥 𝑘+1 =   𝑇𝑚 − 𝐸𝑚  
−1𝐹𝑚𝑥

 𝑘 +  𝑇𝑚 − 𝐸𝑚  
−1, 𝑘 = 0,1 2, …                                       4  

Let 𝜔 be a parameter such that the matrix 𝑇𝑚 − 𝜔𝐸𝑚   be nonsingular.  

Salkuyeh, D. (2007) considers the following Successive Over Relaxation Generalized 

Nekrassov-Mehmke method (GNM1)-(SORGNM1): 

𝑥 𝑘+1 =  𝑇𝑚 − 𝜔𝐸𝑚  
−1 𝜔𝐹𝑚 +  1 − 𝜔 𝑇𝑚  𝑥

 𝑘 +  𝑇𝑚 −𝜔𝐸𝑚  
−1𝜔𝑏                    5  

𝑘 = 0, 1, 2 

Let 𝐺 𝑚 𝐺𝐴𝑂𝑅  𝜔 be the iteration matrix of the method (5), i.e.  

𝐺 𝑚 𝐺𝐴𝑂𝑅  𝜔 =  𝑇𝑚 − 𝜔𝐸𝑚  
−1 𝜔𝐹𝑚 +  1 − 𝜔 𝑇𝑚  . 
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Theorem 1: Let 𝐴 and 𝑇𝑚  be strictly diagonally dominant (SDD). Then for every 0 < 𝜔 <
2, the method (SORGNM1) converges. 

Proof: see (Zaharieva, D. and Malinova, A., 2011) 

Salkuyeh, D. (2011) proposed Generalized Accelerated Over relation method-(GAOR), 

based on the Nekrassov-Mehmke mehod (GNM1) : 

𝑥 𝑘+1 =  𝑇𝑚 − 𝛾𝐸𝑚  
−1  1 − 𝜔 𝑇𝑚 +  𝜔 − 𝛾 𝐸𝑚 + 𝜔𝐹𝑚 𝑥

 𝑘 +  𝑇𝑚 − 𝛾𝐸𝑚  
−1𝜔𝑏     6  

𝑘 = 0,1,2, … , based on method (5), where0 ≤ 𝛾 < 𝜔 ≤ 1. 

Let 𝐺 𝑚 𝐺𝐴𝑂𝑅  𝛾,𝜔 be the iteration matrix of the method (6), i.e.  

𝐺 𝑚 𝐺𝐴𝑂𝑅  𝛾, 𝜔 =  𝑇𝑚 − 𝛾𝐸𝑚  
−1  1 − 𝜔 𝑇𝑚 +  𝜔 − 𝛾 𝐸𝑚 +𝜔𝐹𝑚  

Procedure (6) is valid in the case where  𝐴 is an𝑀 − matrix. 

Definition 1: 𝑨is an 𝑀 −matrix if𝑎𝑖𝑖 > 0for 𝑖 = 1, 2, … , 𝑛,  𝑎𝑖𝑗 ≤ 0 for 𝑖 ≠ 𝑗, 𝐴 is 

nonsingular and 𝐴−1 ≥ 0. 

Definition 2: Let  𝐴 ∈ ℜ𝑛×𝑛 . The splitting 𝐴 = 𝑀 − 𝑁 is called: 

a. Weak regular if 𝑀−1 ≥ 0 and 𝑀−1𝑁 ≥ 0; 

b. Regular if 𝑀−1 ≥ 0 and 𝑁 ≥ 0 

Theorem 2: Let 𝐴 = (𝑎𝑖𝑗 ) and 𝐵 =  𝑏𝑖𝑗   be two matrices such that 𝐴 ≤ 𝐵 and 𝑏𝑖𝑗 ≤ 0 for 

all 𝑖 ≠ 𝑗. Then, if 𝐴 is an M-matrix, so is the matrix 𝐵 (Saad, Y., 1995).𝐴and 𝐵 are 𝑛 

dimensional square matrices. 

Theorem 3: Let 𝐴 be an M-matrix and 𝐴 = 𝑀 − 𝑁 regular or weak regular splitting of 𝐴. 

Then,  𝜌 𝑀−1𝑁 < 1(Wang, L. and Song, Y., 2009). 

Lemma 1: Let A be an M-matrix and𝐴 = 𝑇𝑚 − 𝐸𝑚 − 𝐹𝑚  be the splitting of 𝐴. Then 𝑇𝑚  is 

an M-matrix and 𝜌 𝑇𝑚
−1𝐸𝑚  < 1 (Salkuyeh, D., 2011). 

Theorem 4: If A is an M-matrix and 0 ≤ 𝛾 ≤ 𝜔 ≤ 1, with 𝜔 ≠ 0, then the AOR iterative 

method is convergent, i.e., 𝜌 𝐺𝐴𝑂𝑅 𝛾, 𝜔  < 1 (Wu, M. et al., 2007). 

Theorem 5: If A is an M- matrix and 0 ≤ 𝛾 ≤ 𝜔 ≤ 1with 𝜔 ≠ 0, then the method (6) is 

convergent, i.e.,𝜌  𝐺 𝑚 𝐺𝐴𝑂𝑅  𝛾, 𝜔  < 1. 

Proof: In the GAOR iterative method, we have 𝐴𝑚 = 𝑀𝑚 − 𝑁𝑚  , where 𝑀𝑚 = 𝑇𝑚 − 𝛾𝐸𝑚 , 

and   𝑁𝑚 =  1 − 𝜔 𝑇𝑚 +  𝜔 − 𝛾 𝐸𝑚 + 𝜔𝐹𝑚 .   
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Evidently, we have 𝐴 ≤ 𝑀𝑚 . Therefore, by Theorem 2, 𝑀𝑚  is an M-matrix and 𝑀𝑚
−1 ≥

0.  

From Lemma 1, we have 𝜌 𝑇𝑚
−1𝐸𝑚 < 1. 

Since0 ≤ 𝛾 ≤ 1, we have𝜌 𝛾𝑇𝑚
−1𝐸𝑚  < 1, and therefore, 

𝑀𝑚
−1𝑁𝑚 =  𝑇𝑚 − 𝛾𝐸𝑚  

−1  1 − 𝜔 𝑇𝑚 +  𝜔 − 𝛾 𝐸𝑚 + 𝜔𝐹𝑚  

         = 𝐼 − 𝛾𝑇𝑚
−1𝐸𝑚  

−1
  1 − 𝜔 𝐼 +  𝜔 − 𝛾 𝑇𝑚

−1𝐸𝑚 + 𝜔𝑇𝑚
−1𝐹𝑚       ≥ 0. 

Therefore, we conclude that 𝜔𝐴 = 𝑀𝑚 −𝑁𝑚  is a weak splitting of 𝜔𝐴. Now, from 

Theorem 3, we realize that 𝜌 𝛾𝑀𝑚
−1𝑁𝑚 < 1 and this completes the proof. 

Refinement of Generalized Accelerated Over Relaxation Method based on the 

Nekrassov-Mehmke1-method (GNM1)- 𝑹𝑮𝑨𝑶𝑹 . 

Since the rate of convergence of stationary iterative process depends on spectral radius of 

the iterative matrix, any reasonable modification of the iterative matrix that will reduce the 

spectral radius increases the rate of convergence of that method (Vatti, V. and Genanew, 

G. G.,2011). 

 

Let 𝑥 1  be an initial approximation for the solution of the system in Eq. 1  and 

𝑏𝑖
 1 =  𝑎𝑖𝑗 𝑥𝑗

 1 

𝑛

𝑗=1

, 𝑖 = 1,2, … , 𝑛. 

After 𝑘𝑡ℎ  iteration, we obtain           𝑏𝑖
 𝑘+1 =  𝑎𝑖𝑗 𝑥𝑗

 𝑘+1 𝑛
𝑗=1 , 𝑖 = 1,2, … , 𝑛. 

This obtained solution is refined as  𝑏𝑖
 𝑘+1 → 𝑏𝑖 . 

Assume that  𝑥  𝑘+1 =  𝑥 1
 𝑘+1 , … , 𝑥 𝑛

 𝑘+1   is good approximation for the solution of the 

system in Eq. 1 , i.e., 𝑥  𝑘+1 → 𝑥, where 𝑥 is the exact solution of Eq. 1 , and 𝑏𝑖 =

 𝑎𝑖𝑗 𝑥 𝑗
 𝑘+1 𝑛

𝑗=1 , 𝑖 = 1,2, … , 𝑛. 

Since all  𝑥 𝑗
 𝑘+1  are unknown, we define it as follows, 𝑥  𝑘+1 = 𝑥 𝑘+1 + 𝑏 𝑘+1 − 𝑏. 

By the decomposition: 

𝜔𝐴 =  𝑇𝑚 − 𝜔𝐸𝑚  −   1 − 𝜔 𝑇𝑚 + 𝜔𝐹𝑚   

 𝑇𝑚 − 𝜔𝐸𝑚  𝑥 −   1 − 𝜔 𝑇𝑚 + 𝜔𝐹𝑚  𝑥 = 𝜔𝑏 

 𝑇𝑚 − 𝜔𝐸𝑚  𝑥 =   1 − 𝜔 𝑇𝑚 + 𝜔𝐹𝑚  𝑥 + 𝜔𝑏 
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 𝑇𝑚 − 𝜔𝐸𝑚  𝑥 =  𝑇𝑚 −𝜔𝐴 − 𝜔𝐸𝑚  𝑥 + 𝜔𝑏 

 𝑇𝑚 − 𝜔𝐸𝑚  𝑥 =  𝑇𝑚 − 𝜔𝐸𝑚  𝑥 + (𝑏 − 𝐴𝑥)𝜔 

𝑥 = 𝑥 +  𝑇𝑚 − 𝜔𝐸𝑚  
−1(𝑏 − 𝐴𝑥)𝜔 

That is,                          𝑥  𝑘+1 = 𝑥 𝑘+1 +  𝑇𝑚 − 𝜔𝐸𝑚  
−1(𝑏𝜔 − 𝜔𝐴𝑥 𝑘+1 ) 

 

From Eq. (5), we have 

𝑥  𝑘+1 =  𝑇𝑚 − 𝜔𝐸𝑚  
−1 𝜔𝐸𝑚 +  1 − 𝜔 𝑇𝑚  𝑥

 𝑘 +  𝑇𝑚 − 𝜔𝐸𝑚  
−1𝜔𝑏 + 

 𝑇𝑚 − 𝜔𝐸𝑚  
−1  𝜔𝑏 − 𝜔𝐴  𝑇𝑚 − 𝜔𝐸𝑚  

−1  1 − 𝜔 𝑇𝑚 + 𝜔𝐹𝑚 𝑥
 𝑘 +  𝑇𝑚 −𝜔𝐸𝑚  

−1𝜔𝑏   

Therefore, the 𝐺(𝑚)
𝑅1𝐺𝐴𝑂𝑅  becomes 

 

𝑥 𝑘+1 =   𝑇𝑚 − 𝜔𝐸𝑚  
−1  1 − 𝜔 𝑇𝑚 + 𝜔𝐹𝑚  

2
𝑥 𝑘 + 

 𝑇𝑚 − 𝜔𝐸𝑚  
−1 𝐼 +  𝑇𝑚 − 𝜔𝐸𝑚  

−1  1 − 𝜔 𝑇𝑚 + 𝜔𝐹𝑚  𝜔𝑏 

𝑘 0,1,2, …                                                                                                                          (7) 

We shall call the matrix 𝐺 𝑚 𝑅1𝐺𝐴𝑂𝑅 =   𝑇𝑚 − 𝜔𝐸𝑚  
−1  1 − 𝜔 𝑇𝑚 +𝜔𝐹𝑚  

2
as 

refinement of generalized accelerated over relaxation iteration matrix and  𝑇𝑚 −
𝜔𝐸𝑚−1𝐼+𝑇𝑚−𝜔𝐸𝑚−11−𝜔𝑇𝑚+𝜔𝐹𝑚𝜔𝑏  the corresponding refinement of generalized 

accelerated over relaxation vector. 

Theorem 6: Let 𝐴 be strictly diagonally dominant (SDD) matrix of order 𝑛. Then for any 

natural number 𝑚 ≤ 𝑛 the (RSOR1GNM1) method is convergent for any initial guess 𝑥 0 . 

Proof: Assume 𝑥 is the exact solution of Eq. (1), as 𝐴 is SDD matrix, by Theorem 1, a 

(SOR1GNM1) is convergent. 

Let  𝑥 𝑘+1 → 𝑥. Then 

 𝑥  𝑘+1 − 𝑥 
∞
≤  𝑥 𝑘+1 − 𝑥 

∞
+ 𝜔  𝑇𝑚 − 𝜔𝐸𝑚  

−1 ∞ 𝑏 − 𝐴𝑥
 𝑘+1 ) 

∞
 

Evidently, 𝑥 𝑘+1 − 𝑥 
∞
→ 0, we have  𝑏 − 𝐴𝑥 𝑘+1 ) 

∞
→ 0. 

As a result,  𝑥  𝑘+1 − 𝑥 
∞
→ 0 and a (RSOR1GNM1) method is convergent.       
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Theorem 7: Let A be an M-matrix of order 𝑛. Then for any natural number 𝑚 ≤ 𝑛 then 

the (RSOR1GN1) method is convergent for any initial guess 𝑥 0 . 

Proof: Let  𝑀𝑚=𝑇𝑚 − 𝜔𝐸𝑚  and 𝑁𝑚 =  1 − 𝜔 𝑇𝑚 + 𝜔𝐹𝑚  in  𝐺 𝑚 𝑅1𝐺𝐴𝑂𝑅  . Evidently, 

𝐴 ≤ 𝑇𝑚 − 𝜔𝐸𝑚 . 

Hence by Theorem 2, we conclude that the matrix 𝑀𝑚  is an M-matrix. On the other hand, 

𝑁𝑚 ≥ 0. Thus, 𝐴 = 𝑀𝑚 −𝑁𝑚  is a regular splitting of the matrix 𝐴. Bearing in mind that 

𝐴−1 ≥ 0 and making use of Theorem 3, we conclude  that 𝜌   𝑇𝑚 − 𝜔𝐸𝑚  
−1  1 −

𝜔𝑇𝑚+𝜔𝐹𝑚<1.  

We realize that the iteration matrix of refinement of generalized accelerated over 

relaxation method is the square of the iteration matrix of generalized accelerated over 

relaxation iteration matrix, i.e. 𝐺 𝑚 𝑅𝐺𝐴𝑂𝑅  𝜔 =  𝐺 𝑚 𝐺𝐴𝑂𝑅  𝜔  
2
. 

Evidently, 𝜌  𝐺 𝑚 𝑅𝐺𝐴𝑂𝑅  𝜔  =  𝜌  𝐺 𝑚 𝐺𝐴𝑂𝑅  𝜔   
2

, where 𝜌  𝐺 𝑚 𝐺𝐴𝑂𝑅  𝜔   is the 

spectral radius of GAOR iteration matrix, whereas  𝜌  𝐺 𝑚 𝐺𝐴𝑂𝑅  𝜔   
2

is the spectral 

radius of RGAOR iteration matrix. Since GAOR converges, 𝜌  𝐺 𝑚 𝐺𝐴𝑂𝑅  𝜔  < 1, then 

𝜌  𝐺 𝑚 𝑅𝐺𝐴𝑂𝑅  𝜔  < 𝜌  𝐺 𝑚 𝐺𝐴𝑂𝑅 𝜔  < 1. 

 

Hence, RSOR1GNM1 method is convergent. 

Thus, if GAOR and RGAOR converge, then the RGAOR converges faster than the GAOR 

method. 

Let 𝛾 be a fixed parameter so that  𝑇𝑚 − 𝜔𝐸𝑚  be nonsingular.  

By the decomposition: 

𝜔𝐴 =  𝑇𝑚 − 𝛾𝐸𝑚  −   1 − 𝜔 𝑇𝑚 +  𝜔 − 𝛾 𝐸𝑚 + 𝜔𝐹𝑚   

We have, 

  𝑇𝑚 − 𝛾𝐸𝑚  −   1 − 𝜔 𝑇𝑚 +  𝜔 − 𝛾 𝐸𝑚 + 𝜔𝐹𝑚   𝑥 = 𝜔𝑏. 

 𝑇𝑚 − 𝛾𝐸𝑚  𝑥 =   1 − 𝜔 𝑇𝑚 +  𝜔 − 𝛾 𝐸𝑚 + 𝜔𝐹𝑚  𝑥 +  𝜔𝑏 

 𝑇𝑚 − 𝛾𝐸𝑚  𝑥 =  𝑇𝑚 − 𝛾𝐸𝑚 − 𝜔𝐴 𝑥 +  𝜔𝑏 

 𝑇𝑚 − 𝛾𝐸𝑚  𝑥 =  𝑇𝑚 − 𝛾𝐸𝑚  𝑥 +  𝜔(𝑏 − 𝐴𝑥) 

𝑥 = 𝑥 +  𝜔 𝑇𝑚 − 𝛾𝐸𝑚  
−1(𝑏 − 𝐴𝑥) 
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That is,                                𝑥  𝑘+1 = 𝑥 𝑘+1 +  𝜔 𝑇𝑚 − 𝛾𝐸𝑚  
−1(𝑏 − 𝐴𝑥 𝑘+1 ) 

 

From method (6), we have 

𝑥  𝑘+1 =  𝑇𝑚 − 𝛾𝐸𝑚  
−1  1 − 𝜔 𝑇𝑚 +  𝜔 − 𝛾 𝐸𝑚 + 𝜔𝐹𝑚 𝑥

 𝑘 +  𝑇𝑚 − 𝛾𝐸𝑚  
−1𝜔𝑏 + 

 𝑇𝑚 − 𝛾𝐸𝑚  
−1  𝜔𝑏

− 𝜔𝐴  𝑇𝑚 − 𝛾𝐸𝑚  
−1  1 − 𝜔 𝑇𝑚 +  𝜔 − 𝛾 𝐸𝑚 +𝜔𝐹𝑚)𝑥 𝑘 

+  𝑇𝑚 − 𝛾𝐸𝑚  
−1𝜔𝑏   

Therefore, the  𝐺(𝑚)
𝑅2𝐺𝐴𝑂𝑅  becomes 

𝑥 𝑘+1 =   𝑇𝑚 − 𝛾𝐸𝑚  
−1  1 − 𝜔 𝑇𝑚 +  𝜔 − 𝛾 𝐸𝑚 +𝜔𝐹𝑚  

2
𝑥 𝑘 + 

 𝑇𝑚 − 𝛾𝐸𝑚  
−1 𝐼 +  𝑇𝑚 − 𝛾𝐸𝑚  

−1  1 − 𝜔 𝑇𝑚 +  𝜔 − 𝛾 𝐸𝑚 + 𝜔𝐹𝑚  𝜔𝑏 

  𝑘 = 0,1,2, …                                                                                                                       (8),  

  where 0 ≤ 𝛾 < 𝜔 ≤ 1. 

We shall call the method (8) the Refinement of (SOR2GNM1) method –(RSOR2GNM1) 

We shall call the matrix 𝐺 𝑚 𝑅2𝐺𝐴𝑂𝑅 =   𝑇𝑚 − 𝛾𝐸𝑚  
−1  1 − 𝜔 𝑇𝑚 +  𝜔 − 𝛾 𝐸𝑚 +

𝜔𝐹𝑚2  as refinement of generalized accelerated over relaxation iteration matrix and 

 𝑇𝑚 − 𝛾𝐸𝑚  
−1 𝐼 +  𝑇𝑚 − 𝛾𝐸𝑚  

−1  1 − 𝜔 𝑇𝑚 +  𝜔 − 𝛾 𝐸𝑚 +𝜔𝐹𝑚  𝜔𝑏 the 

corresponding refinement of generalized accelerated over relaxation vector. 

Theorem 8 Let A be an M-matrix. Then for any natural number 𝑚 ≤ 𝑛 the 

(RSOR2GNM1) method is convergent for any initial guess 𝑥 0 . 

Proof: The proof follows from Theorem 5 and 7, and will be omitted. 
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Numerical Experiments 

The numerical examples presented in this section are computed with some MATLAB 

codes on a personal computer Intel® Core™ i3-3420CPU@3.40GHZ having 2GB 

memory(RAM) with 32 bits operating system(window 7 home premium). The stopping 

criteria used is  𝑥𝑖
 𝑘+1 − 𝑥𝑖

 𝑘  ≤ 5 ×  10−7, where 𝑥𝑖
 𝑘+1  and  𝑥𝑖

 𝑘  are the computed 

solutions at the (𝒌 + 𝟏) and 𝒌𝒕𝒉  step of each method, respectively. 

Here we consider two examples to illustrate the theory developed in this paper. The 

efficiency of the proposed method (RSOR1GNM1 and RSOR2GNM1) is compared with 

SOR1GNM1 and SOR2GNM1.  

Example1. Consider the system of equations considered by (YOUNG, D. M., 1971; Vatti, 

V. and Genanew, G. G., 2011). 

 

 

4 0 −1
0 4 −

−1
−1

−1 −1 4
−1 −1 0

0
4

  

𝑥1

𝑥2
𝑥3

𝑥4

  =   

100
0

100
0

  

 

This matrix is strictly diagonally dominant with positive diagonal and non-positive off-

diagonal entries, and 𝐴−1 ≥ 0.  Hence, the coefficient matrix 𝐴 is an M-matrix. 

The solution of the above system is solved and tabulated by using the methods 

SOR2GNM1, RSOR2GNM1, SOR1GNM1 and RSOR1GNM1 taking the initial 

approximations for 𝑥′𝑠 as all zero vector and letting 𝜔 = 0.9 and 𝛾 = 0.5. 

mailto:i3-3420CPU@3.40GHZ
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Table 1: Spectral radii of SOR2GNM1, RSOR2GNM1, SOR1GNM1 and RSOR1GNM1  

  when m = 1 of example 1. 

Method SOR2GNM1 SOR1GNM1 RSOR1GNM1 RSOR2GNM1 

Spectral 

radius  

0.4269416899692237 0.3286647942326976 0.1080205469680216 0.1822792066337767 
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Table 2: Numerical solution of example1 by SOR2GNM1, RSOR2GNM1, SOR1GNM1   

              and  RSOR1GNM1 when m = 1 

SOR2GNM1 RSOR2GNM1 

n 𝒙𝟏
 𝒏  𝒙𝟐

 𝒏  𝒙𝟑
 𝒏  𝒙𝟒

 𝒏  𝒙𝟏
 𝒏  𝒙𝟐

 𝒏  𝒙𝟑
 𝒏  𝒙𝟒

 𝒏  

0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

1 22.500000 6.750000 27.000000 3.656250 31.647656 9.207422 33.539062 8.397509 

2 31.647656 9.207422 33.539063 8.397510 36.493959 11.811068 36.842166 11.711346 

3 35.100494 10.950096 35.913573 10.681583 37.318739 12.371311 37.382322 12.354827 

4 36.493959 11.811068 36.842166 11.711346 37.467034 12.476434 37.478627 12.473489 

5 37.073936 12.200800 37.222778 12.160979 37.493993 12.495700 37.496106 12.495165 

6 37.318739 12.371311 37.382322 12.354828 37.498905 12.499216 37.499290 12.499118 

7 37.422733 12.444881 37.449885 12.437939 37.499800 12.499857 37.499870 12.499839 

8 37.467034 12.476434 37.478628 12.473489 37.499963 12.499973 37.499976 12.499970 

9 37.485930 12.489933 37.490880 12.488670 37.499993 12.499995 37.499995 12.499994 

10 37.493994 12.495701 37.496107 12.495166 37.499998 12.499999 37.499999 12.499999 

11 37.497436 12.498164 37.498338 12.497936 37.499999 12.500000 37.500000 12.500000 

12 37.498905 12.499216 37.499290 12.499119 37.500000 12.500000 37.500000 12.500000 

13 37.499533 12.499665 37.499697 12.499624     

14 37.499800 12.499857 37.499871 12.499839     

15 37.499915 12.499939 37.499945 12.499931     

16 37.499964 12.499974 37.499976 12.499971     

17 37.499984 12.499988 37.499990 12.499987     

18 37.499993 12.499995 37.499996 12.499995     

19 37.499997 12.499998 37.499998 12.499998     

20 37.499999 12.499999 37.499999 12.499999     

21 37.499999 12.500000 37.500000 12.500000     

22 37.500000 12.500000 37.500000 12.500000     

CPU time (in seconds) = 0.050323 CPU time (in seconds) =  0.0238879 
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SOR1GNM1 RSOR1GNM1 

n 𝒙𝟏
 𝒏  𝒙𝟐

 𝒏  𝒙𝟑
 𝒏  𝒙𝟒

 𝒏  𝒙𝟏
 𝒏  𝒙𝟐

 𝒏  𝒙𝟑
 𝒏  𝒙𝟒

 𝒏  

0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

1 22.500000 7.350000 29.400000 6.716250 32.876156 10.319469 35.233252 10.390640 

2 32.876156 10.319469 35.233252 10.390641 37.035904 12.218478 37.275424 12.260334 

3 36.052992 11.688880 36.799482 11.780985 37.450653 12.468553 37.476098 12.473899 

4 37.035904 12.218479 37.275424 12.260335 37.494685 12.496582 37.497425 12.497176 

5 37.349136 12.405276 37.426955 12.420776 37.499426 12.499630 37.499722 12.499694 

6 37.450653 12.468553 37.476099 12.473899 37.499938 12.499960 37.499969 12.499967 

7 37.483815 12.489620 37.492159 12.491413 37.499993 12.499995 37.499996 12.499996 

8 37.494685 12.496582 37.497425 12.497176 37.499999 12.499999 37.499999 12.499999 

9 37.498254 12.498876 37.499154 12.499072 37.500000 12.500000 37.500000 12.500000 

10 37.499426 12.499630 37.499722 12.499695     

11 37.499811 12.499879 37.499909 12.499000     

12 37.499938 12.499960 37.499970 12.499967     

13 37.499980 12.499987 37.499990 12.499989     

14 37.499993 12.499996 37.499997 12.499996     

15 37.499998 12.499999 37.499999 12.499999     

16 37.499999 12.499999 37.499999 12.500000     

17 37.500000 12.500000 37.500000 12.500000     

CPU time (in seconds) = 0.043437 CPU time (in seconds) = 0.019739 
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Table 3: Numerical solution of example1 by SOR2GNM1, RSOR2GNM1,  

   SOR1GNM1 and RSOR1GNM1 when m = 2 

Method Spectral Radius Iteration 

Number 

CPU time 

(in second) 

SOR2GNM1 0.2912208524 16 0.062166 

SOR1GNM1 0.2142471721 13 0.031271 

RSOR2GNM1 0.0840958490 9 0.025449 

RSOR1GNM1 0.0459018507 7 0.016730 

 

Example2. Consider 2-cyclic matrix, which arises from discretization of the Poisson’s 

equation
𝜕2𝑇

𝜕𝑥 2 +
𝜕2𝑇

𝜕𝑦 2 = 𝑓(𝑥, 𝑦)  on the unit square as considered by (Dafchahi, F. N., 2008; 

Vatti, V. and Genanew, G.G., 2011). 

Now consider𝐴𝑥 = 𝑏, where 𝑥 =  𝑥1 , … , 𝑥6 
𝑇  and 𝑏 =  1, 0,0, 0, 0, 0 𝑇  or 

 

 

  
 

4 −1 0
−1 4 −1
0 −1 4

−1 0 0
0 −1 0
0 0 −1

−1 0 0
0 −1 0
0 0 −1

4 −1 0
−1 4 −1
0 −1 4  

  
 

 

  
 

𝑥1

𝑥2
𝑥3

𝑥4
𝑥5

𝑥6 

  
 

=

 

  
 

1
0
0
0
0
0 

  
 

 

 

This matrix is strictly diagonally dominant with positive diagonal and non-positive off-

diagonal entries𝐴−1 ≥ 0.  

Hence, the coefficient matrix 𝐴 is an M-matrix. 

The solution of the above system is solved and tabulated below by using the iterative 

methods SOR2GNM1, RSOR2GNM1, SOR1GNM1 and RSOR1GNM1 taking the initial 

approximations for 𝑥′𝑠 as all zero vector letting 𝜔 = 0.9 and 𝛾 = 0.5. 
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Table 4: Spectral radii of SORG2NM1, RSORG2NM1, SOR1GNM1 and RSOR1GNM1   

              when m = 1of example 2 

Method SOR2GNM1 SOR1GNM1 RSOR1GNM1 RSOR2GNM1 

Spectral 

radius  

0.382053999242000 0.286203173633144 0.081912256597683 0.145965258336806 

 

 

Table 5:  Numerical solution of example2 by SORG2NM1, RSORG2NM1, SOR1GNM1   

               and RSOR1GNM1 when m = 1 

 

n 

SOR2GNM1 CPU 

time(sec) 𝒙𝟏
 𝒏  𝒙𝟐

 𝒏  𝒙𝟑
 𝒏  𝒙𝟒

 𝒏  𝒙𝟓
 𝒏  𝒙𝟔

 𝒏  

1 

2 

⋮ 
12 

13 

0.2410714285 

0.2748368030 

⋮ 
0.2948237169 

0.2948239025 

0.0642857142 

0.0780940233 

⋮ 
0.0931672842 

0.0931675422 

0.0160714285 

0.0210086780 

⋮ 
0.0281570584 

0.0281572381 

0.0347257653 

0.0710383389 

⋮ 
0.0861281217 

0.0861282720 

0.0183673469 

0.0382528113 

⋮ 
0.0496891025 

0.0496893116 

0.0066007653 

0.0139973232 

⋮ 
0.0194614614 

0.0194616071 

 

 

0.016151 

 

n 

SOR1GNM1 CPU 

time(sec) 𝒙𝟏
 𝒏  𝒙𝟐

 𝒏  𝒙𝟑
 𝒏  𝒙𝟒

 𝒏  𝒙𝟓
 𝒏  𝒙𝟔

 𝒏  

1 

2 

⋮ 
10 

11 

0.2410714285 

0.2825633883 

⋮ 
0.2948236728 

0.2948239191 

0.0642857142 

0.0839978134 

⋮ 
0.0931672315 

0.0931675671 

0.0160714285 

0.0236727633 

⋮ 
0.0281570262 

0.0281572564 

0.0625063775 

0.0801489119 

⋮ 
0.0861281814 

0.0861283124 

0.0330612244 

0.0445921699 

⋮ 
0.0496891892 

0.0496893689 

0.0118813775 

0.0168360213 

⋮ 
0.0194615237 

0.0194616475 

 

 

0.015458 
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n 

 

 

 

RSOR2GNM1 

 

 

 

CPU 

time(sec) 𝒙𝟏
 𝒏  𝒙𝟐

 𝒏  𝒙𝟑
 𝒏  𝒙𝟒

 𝒏  𝒙𝟓
 𝒏  𝒙𝟔

 𝒏  

1 

2 

⋮ 
6 

7 

0.2748368030 

0.2925673346 

⋮ 
0.2948232279 

0.2948239025 

0.0780940233 

0.0908550744 

⋮ 
0.0931666091 

0.0931675422 

0.0210086780 

0.0268480955 

⋮ 
0.0281565911 

0.0281572381 

0.0710383389 

0.0843303828 

⋮ 
0.0861277259 

0.0861282720 

0.0382528113 

0.0478213664 

⋮ 
0.0496885554 

0.0496893116 

0.0139973232 

0.0183948694 

⋮ 
0.0194610823 

0.0194616071 

 

 

0.013495 

 

 

n 

RSOR1GNM1 CPU 

time(sec) 𝒙𝟏
 𝒏  𝒙𝟐

 𝒏  𝒙𝟑
 𝒏  𝒙𝟒

 𝒏  𝒙𝟓
 𝒏  𝒙𝟔

 𝒏  

1 

2 

⋮ 
5 

6 

0.2825633883 

0.2940394571 

⋮ 
0.2948236728 

0.2948239888 

0.0839978134 

0.0923461701 

⋮ 
0.0931672315 

0.0931676632 

0.0236727633 

0.0276790386 

⋮ 
0.0281570262 

0.0281573229 

0.0801489119 

0.0857254153 

⋮ 
0.0861281814 

0.0861283496 

0.0445921699 

0.0492453211 

⋮ 
0.0496891892 

0.0496894203 

0.0168360213 

0.0191956668 

⋮ 
0.0194615237 

0.0194616832 

 

 

0.012419 
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CONCLUSION  
 

In this paper, the refinement of generalized 

accelerated over relaxation method, based 

on the Nekrassov-Mehmke 1- method 

(GNM1), for solving system of linear 

equations is proposed and its convergence 

properties for SDD and M-matrices is 

studied. Two numerical examples (a 4X4 

and 6X6 system of linear equations) are 

presented and investigated by using 

MATLAB version 7.60(R2008a) software 

package to show the effectiveness of the 

proposed method. The results obtained by 

RSOR1GNM1 and RSOR2GNM1 are 

compared with that of SOR1GNM1 and 

SOR2GNM1 as depicted in Tables1, 2, 3, 4 

and 5. The analysis of the results in tables 

shows that the proposed method converges 

to the exact solution faster than the 

SOR1GNM1 and SOR2GNM1in terms of 

iteration numbers and computational 

running times. As a result, RSOR1GNM1 

and RSOR2GNM1 require less memory 

than SOR1GNM1 and SOR2GNM1. 
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