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Abstract 

In this paper refined generalized numerical algorithms for solving systems of linear 

equations whose coefficient matrices are M-matrices are extended for solving Fuzzy 

Linear Systems (FLS)such as Refined Generalized Jacobi (RGJ), and Refined 

Generalized Gauss-Seidel (RGGS) iteration methods. The embedding approach and 

splitting strategy of the M-matrix together with the refinement process have been 

employed in the development of these methods. The presented algorithms are tested and 

compared with a similar work by solving a numerical example and the results showed 

that the present methods perform better. 
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INTRODUCTION 

Systems of linear equation play a major 

role in various areas of science. Many 

problems at various areas of science can be 

solved by solving a system of linear 

equation. Since some of the systems are 

parametric and measurements are vague or 

imprecise, are represented by fuzzy 

numbers. One of the major applications of 

using fuzzy number arithmetic is treating 

linear systems whose parameters are all or 

partially represented by fuzzy numbers 

(Friedman et al., 1998). Development of 

mathematical models and numerical 

procedures that would appropriately treat 

general fuzzy linear systems and solve 

them is important. The system of linear 

equations, AX b , is called fuzzy 

system of linear equations(FSLE), in which 

coefficients ( )n n matrix A is crisp and b 

is a column matrix which is a fuzzy number 

vector. A general model for solving a fuzzy 

linear system (FLS) whose coefficient 

matrix is crisp and the right-hand side 

column is an arbitrary fuzzy number was 

first proposed by Friedman et al. (1998). 

They proposed a general model for solving 

such fuzzy linear systems by using the 

embedding approach where they replace 

the original system AX b  by 

(2 ) (2 )n n  representation SX Y .The 

fuzzy linear equations have been studied by 

many authors. In following Friedman et al. 

(1998), Allahviranlooet al. (2006) and 

other authors such as Abbasbandyet al. 

(2006), Asadyet al. (2005), Dehghanet al. 

(2006), Wang et al. (2006), Zhenget 

al.(2006), and Ezzatiet al. (2010) designed 

some numerical methods for calculating the 

solution of fuzzy linear system.  

 

Salkuyeh (2007) developed the generalized 

Gauss-Seidel method for solving non-fuzzy 

linear systems by using a stationary first 

order iterative method and the splitting 

procedure based on M-matrix and 

concluded that it is more effective than the 

conventional Jacobi and Gauss-Seidel 

methods. Refinement of generalized Gauss-

Seidel method have been developed by 

Genanew Gofe (2016) for non-fuzzy linear 

systems. Various Jacobi based iterative 

methods using the refinement strategy and 

over-relaxation parameter for solving non-

fuzzy linear systems have been extended to 

FLS by Abdullah and Rahman (2013). So, 

one can see that several efforts are exerted 

in order to extend strategies of solving non-

fuzzy linear systems to FLS in an attempt 

to get more effective methods in terms of 

having small number of iteration required 

to converge to the exact solution and less 

computation times which are applicable in 

solving FLS. 

The purpose of this paper is to extend the 

works of Genanew (2016) and Abdullah 

and Rahman (2013) to solve FLS in order 

to get more accurate and efficient 

numerical methods than the existing ones.  

 
Preliminaries and Description of the Method 

Preliminaries 

Definition 2.1: A matrix A is said to be an M-matrix if it satisfies the following four 

properties 

 𝑖 𝑎𝑖𝑖 > 0, for 𝑖 = 1 1 𝑁 

 𝑖𝑖 𝑎𝑖𝑖 < 0 for 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1 1 𝑁 
 𝑖𝑖𝑖  𝐴 is nonsingular 

 𝑖𝑖𝑖  𝐴−1 ≥ 0 
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Definition 2.2: A banded matrix is a square 

matrix with zeros after “m” elements above 

and below the main diagonal, where m is 

less than the size of the matrix (i.e. if the 

matrix is 𝑁 × 𝑁, then 𝑚 < 𝑁). In this case 

where bandedness mater, “m” is usually 

significantly less than N. 

 

Definition 2.3: Let  𝑋denotes a universal 

set. Then a fuzzy subset 𝐴  of 𝑋 is defined 

by its membership function𝜇𝐴: 𝑋 → [0, 1]; 

which assigns a real number 𝜇𝐴(𝑥)  at x 

shows the grade of membership x in 𝐴 . 
Definition 2.4: A fuzzy set with the 

following membership function is named a 

triangular fuzzy number: 

 

 

 

𝜇𝐴 𝑥 =

 
 
 

 
 1 −

𝑚 − 𝑥

∝
, 𝑚−∝≤ 𝑥 ≤ 𝑚,∝> 0

1 −
𝑥 − 𝑚

𝛽
, 𝑚 ≤ 𝑥 ≤ 𝑚 + 𝛽, 𝛽 > 0

0,                              𝑒𝑙𝑠𝑒

  

 

Definition 2.5: An arbitrary fuzzy number 𝑢  in parametric form is represented by an 

ordered pair of functions 𝑢 𝑟 , 𝑢 𝑟  , which satisfy the following requirements: 

(i) 𝑢(𝑟)is a bounded left-continuous non-decreasing function over [0,1] 

(ii) 𝑢(𝑟)is a bounded left-continuous non-increasing function over[0,1]  

(iii) 𝑢 𝑟 ≤ 𝑢 𝑟 , 0 ≤ 𝑟 ≤ 1.  
 

Definition 2.6: For arbitrary fuzzy numbers 𝑥 =  𝑥 𝑟 , 𝑥 𝑟  , 𝑦 =  𝑦 𝑟 , 𝑦 𝑟   and real 

number k we define equality by 𝑥 = 𝑦 , addition by 𝑥 + 𝑦  and multiplication as follows:  

 𝑖 𝑥 = 𝑦 if and only if 𝑥 𝑟 = 𝑦 𝑟  and 𝑥 𝑟 = 𝑦 𝑟 . 

 𝑖𝑖 𝑥 + 𝑦 = (𝑥 𝑟 + 𝑦 𝑟 , 𝑥 𝑟 + 𝑦 𝑟 . 

 𝑖𝑖𝑖  𝑘𝑥 =  
 𝑘𝑥, 𝑘𝑥 ,           𝑘 ≥ 0

 𝑘𝑥, 𝑘𝑥 ,           𝑘 ≤ 0
  

 

Definition 2.7: The𝑛 × 𝑛 linear system of equations  

   

 
 
 

 
 
𝑎11𝑥 1 + 𝑎12𝑥 2 + ⋯ + 𝑎1𝑛𝑥 𝑛 = 𝑏 1 ,

𝑎21𝑥 1 + 𝑎22𝑥 2 + ⋯ + 𝑎2𝑛𝑥 𝑛 = 𝑏 2 ,
.
.
.

𝑎𝑛1𝑥 1 + 𝑎𝑛2𝑥 2 + ⋯+ 𝑎𝑛𝑛 𝑥 𝑛 = 𝑏 𝑛 ,

                                                                       (2.1) 

 

where the coefficient matrix, 𝐴 = [𝑎𝑖𝑗 ]𝑖,𝑗=1
𝑛  is a crisp 𝑛 × 𝑛 matrix and 𝑏 𝑖  are fuzzy 

numbers, is called a fuzzy linear system. The matrix form of the system (2.1) is as follows: 
 

𝐴𝑋𝑏                                                                                                                        (2.2) 
 

where 𝑋 = (𝑥 1 , 𝑥 2 , … , 𝑥 𝑛)𝑇and 𝑏 = (𝑏 1, 𝑏 2 , … , 𝑏 𝑛)𝑇  are the fuzzy number vectors. 
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Considering the system of equations given in Eq. (2.1) and using splitting procedures in 

Salkuyeh (2007), we obtain: 

 𝐴 =  𝑇𝑚 − 𝐸𝑚 − 𝐹𝑚                                                                                                 (2.3) 
 

where𝑇𝑚 = (𝑡𝑖𝑗 ) is a banded matrix of band width 2m + 1 defined as: 

𝑡𝑖𝑗 =  
𝑎𝑖𝑗 , 0 ≤  𝑖 − 𝑗 ≤ 𝑚

0,            otherwise
  

 

Definition 2.8A fuzzy vector 𝑋 = (𝑥 1 , 𝑥 2 , … , 𝑥 𝑛)𝑇  that has been given by𝑥 𝑗 =

 𝑥𝑗  𝑟 , 𝑥𝑗  𝑟  , 1 ≤ 𝑗 ≤ 𝑛, 0 ≤ 𝑟 ≤ 1 is called a solution of (2.1) if: 

=  𝑎𝑖𝑗 𝑥 𝑗
𝑛

𝑗=1
= 𝑏𝑖and   𝑎𝑖𝑗 𝑥 𝑗

𝑛

𝑗=1
=  𝑎𝑖𝑗 𝑥 𝑗

𝑛

𝑗=1
= 𝑏𝑖 ;  𝑖 = 1,2, … , 𝑛         (2.4) 

Definition 2.9: (Allahviranloo and Hahemi, 2014) For an arbitrary fuzzy number 𝑥  in 

parametric form the embedding 𝑥:2 → 2
 is defined as follows: 

𝜋  𝑥 𝑟 , 𝑥 𝑟  =  𝑥 𝑟 − 𝑥 𝑟 , 𝑥 𝑟 + 𝑥 𝑟                                                           (2.5) 

Lemma 2.1: (Allahviranloo and Hahemi, 2014) Let 𝑥 =  𝑥 𝑟 , 𝑥 𝑟  , 𝑦 =

 𝑦 𝑟 , 𝑦 𝑟  are arbitrary fuzzy numbers and let k is a real number. Then: 

(𝑖) 𝑥 = 𝑦 if and only if  𝜋(𝑥 ) = 𝜋(𝑦 ) 

 𝑖𝑖  𝜋 𝑥 + 𝑦  = 𝜋 𝑥  + 𝜋(𝑦 ) 

 𝑖𝑖𝑖  𝜋 𝑘𝑥  = 𝜋  𝑘  𝑥 𝑟 , 𝑥 𝑟   = 𝜋   𝑘  𝑥 𝑟 − 𝑥 𝑟  , 𝑘  𝑥 𝑟 + 𝑥 𝑟    

 

Proof: See Allahviranloo and Hahemi. (2014). 

Using previous lemma 2.1 and Eq. (2.1) Allahviranloo and Hahemi (2014) have obtained 

the following equations: 

  𝑎𝑖𝑗  (

𝑛

𝑗=1

𝑥 𝑟 − 𝑥 𝑟 ) = 𝑏𝑖 𝑟 − 𝑏𝑖 𝑟 , 𝑖 = 1,2, … , 𝑛                                    (2.6)       

 𝑎𝑖𝑗 (

𝑛

𝑗=1

𝑥 𝑟 + 𝑥 𝑟 ) = 𝑏𝑖 𝑟 + 𝑏𝑖(𝑟), 𝑖 = 1,2, … , 𝑛                                       (2.7)       

 

The matrix form of equations (2.6) and (2.7) are as follows: 

BU =  Z, AY =  W                                                                                    (2.8) 

where 𝐵 = [ 𝑎𝑖𝑗  ]𝑖,𝑗=1
𝑛 and 𝐴 = [𝑎𝑖𝑗 ]𝑖 ,𝑗=1

𝑛  and the right hand side columns are the vectors 

𝑍 = (𝑏1 𝑟 − 𝑏1 𝑟 ), … , (𝑏
𝑛
 𝑟 − 𝑏𝑛 𝑟 , )𝑇 ,𝑊 = (𝑏1 𝑟 + 𝑏1 𝑟 ), … , (𝑏

𝑛
 𝑟 + 𝑏𝑛 𝑟 , )𝑇 , 

𝑈 = (𝑥1 𝑟 − 𝑥1 𝑟 ), … , (𝑥
𝑛
 𝑟 − 𝑥𝑛 𝑟 )𝑇and 𝑌 = (𝑥1 𝑟 + 𝑥1 𝑟 ), … , (𝑥𝑛 𝑟 +

𝑥𝑛𝑟)𝑇    are solutions of the crisp linear system of Equations  (2.8). 

 

Moreover, it is stated that the fuzzy linear system (2.1) has a fuzzy solution if the 

matrices 𝐵−, 𝐵− − 𝐴−, 𝐵− + 𝐴−  are nonnegative. Under these conditions, letting the 
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matrices                                 𝑈 = [𝑢𝑖𝑗 ]𝑖,𝑗=1 
𝑛 and 𝑌 = [𝑦𝑖𝑗 ]𝑖 ,𝑗=1

𝑛 and solving equations (2.6) 

and (2.7) for 𝑥1 𝑟  𝑎𝑛𝑑 𝑥1 𝑟  we get: 

 
𝑥𝑖 𝑟 =

1

2
 𝑦𝑖 + 𝑢𝑖 

𝑥𝑖 𝑟 =
1

2
 𝑦𝑖 − 𝑢𝑖 

                                                                                                     (2.9) 

 

It is shown that the equationAX =  b can be converted in to two equations as in Eq. (2.6) 

and Eq. (2.7) obtain its solutions using Eq. (2.9). However, these two equations can be 

expressed as a single system equations SX = Y as follows 

 

 
 
 
 
 
 

 
 
 
 
 
𝑠1,1𝑥1 + ⋯+ 𝑠1,𝑛𝑥𝑛 + 𝑠1,𝑛+1(−𝑥1) + ⋯+ 𝑠1,2𝑛(−𝑥𝑛) =                        𝑦1,

.

.

.
𝑠𝑛,1𝑥1 + ⋯+ 𝑠𝑛,𝑛𝑥𝑛 + 𝑠𝑛,𝑛+1(−𝑥1) + ⋯+ 𝑠𝑛,2𝑛(−𝑥1) =                       𝑦𝑛 ,

𝑠𝑛+1,1𝑥1 + ⋯+ 𝑠𝑛+1,𝑛𝑥𝑛 + 𝑠𝑛+1,𝑛+1(−𝑥1) + ⋯+ 𝑠𝑛+1,2𝑛(−𝑥𝑛) = −𝑦
1

,
.
.
.

𝑠2𝑛,1𝑥1 + ⋯+ 𝑠2𝑛,𝑛𝑥𝑛 + 𝑠2𝑛,𝑛+1(−𝑥1) + ⋯ + 𝑠2𝑛 ,2𝑛(−𝑥𝑛) =            −𝑦
𝑛

                     (2.10) 

 

 where 𝑎𝑖𝑗 ≥ 0  𝑠𝑖 ,𝑗 =   𝑠𝑖+𝑛,𝑗+𝑛 = 𝑎𝑖𝑗 ,   𝑠𝑖+𝑛,𝑗 =  𝑠𝑖 ,𝑗+𝑛 = 0 𝑎𝑛𝑑   

𝑎𝑖𝑗 ≤ 0  𝑠𝑖 ,𝑗+𝑛 =   𝑠𝑖+𝑛,𝑗 = −𝑎𝑖𝑗 ,  𝑠𝑖 ,𝑗 =  𝑠𝑖+𝑛,𝑗+𝑛 = 0. 

 

Theorem 2.1 Suppose that 𝑎𝑖𝑗 > 0; 1 ≤ 𝑖 ≤ 𝑛. The matrix S in (2.10) is strictly diagonally 

dominant if and only if the matrix A in (2.1) is strictly diagonally dominant. 

Proof: See Dehghan and Hashemi (2006). 

 

Theorem 2.2 Let the matrix A in Eq. (2.1) be strictly diagonally dominant with 

nonnegative diagonal elements, then both the RGJ and RGGS iterative methods converges 

to  𝑆−1𝑌 for any arbitrary initial value 𝑋0. 
Proof: See Salkuyeh (2007) 

 

Description of the Methods 

Considering the fuzzy linear system of equations 𝐴𝑋 = 𝑏  and using Eq. (2.4) we 

have𝐴𝑋 = 𝑏and 𝐴𝑋 = 𝑏. 

Applying the splitting procedure in Salkuyeh (2007) on A we get: 

 𝑇𝑚 − 𝐸𝑚 − 𝐹𝑚 𝑋 = 𝑏 3.1  

and  𝑇𝑚 − 𝐸𝑚 − 𝐹𝑚 𝑋 = 𝑏                                                                                                 (3.2) 
 

Applying the stationary first order Gauss-Seidel and Jacobi iterative methods and 

refinement procedure on equations (3.1) and (3.2) we obtain RGGS and RGJ iteration 

formulas respectively. 

𝑋
𝑘+1

=   𝑇𝑚 − 𝐸𝑚 
−1
𝐹𝑚  

2

𝑋
𝑘

+  𝐼 +  𝑇𝑚 − 𝐸𝑚 
−1
𝐹𝑚   𝑇𝑚 − 𝐸𝑚 

−1
𝑏         (3.3) 
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𝑋𝑘+1 =   𝑇𝑚 − 𝐸𝑚  
−1
𝐹𝑚  

2

𝑋𝑘 +  𝐼 +  𝑇𝑚 − 𝐸𝑚  
−1
𝐹𝑚   𝑇𝑚 − 𝐸𝑚 

−1
𝑏             (3.4) 

𝑋
𝑘+1

=  𝑇𝑚

−1
 𝐸𝑚 + 𝐹𝑚  

2

𝑋
𝑘

+  𝐼 + 𝑇𝑚

−1
 𝐸𝑚 + 𝐹𝑚  𝑇𝑚

−1
𝑏                       (3.5) 

𝑋𝑘+1 =  𝑇𝑚
−1 𝐸𝑚 + 𝐹𝑚  

2
𝑋𝑘 +  𝐼 + 𝑇𝑚

−1 𝐸𝑚 + 𝐹𝑚  𝑇𝑚
−1𝑏                           (3.6) 

 

After replacingAX =  bintoSX =  Yby using Eq. (2.10), Eq. (3.3) and Eq. (3.4) together 

and Eq. (3.5) and Eq. (3.6) together can be written in one equation as Eq. (3.7) and Eq. 

(3.8) respectively. 

𝑋𝑘+1 =   𝑇𝑚 − 𝐸𝑚  −1𝐹𝑚  2𝑋𝑘 +  𝐼 +  𝑇𝑚 − 𝐸𝑚  −1𝐹𝑚   𝑇𝑚 − 𝐸𝑚  −1𝑌           (3.7) 

𝑋𝑘+1 =  𝑇𝑚
−1 𝐸𝑚 + 𝐹𝑚   

2
𝑋𝑘 +  𝐼 + 𝑇𝑚

−1 𝐸𝑚 + 𝐹𝑚   𝑇𝑚
−1𝑌                               (3.8) 

where 𝑆 = 𝑇𝑚 − 𝐸𝑚 − 𝐹𝑚 .  

 

Numerical Example and Results 

An example has been considered to verify our methods yield better results than that of 

Abdullah and Rahman (2013) or not. 

 

Example: Consider the 3x3 FLS given by Dehghan et. al. (2007). 

6𝑥1 − 𝑥2 − 𝑥3 = (−18 + 16𝑟, 8 − 10𝑟) 

−𝑥1 + 2𝑥2 − 𝑥3 = (−8 + 8𝑟, 6 − 6𝑟) 

−𝑥1 − 𝑥2 + 𝑥3 = (−3 + 4𝑟, 8 − 7𝑟) 
 

Using equations (2.5) and (2.6) or Eq. (2.9), the exact solution𝑋 = 𝑆−1𝑌 is 

𝑥1 = (2𝑟 − 1, 2 − 𝑟), 𝑥2 =  2𝑟 + 1, 4 − 𝑟 , and 𝑥3 =  2𝑟 + 3, 8 − 𝑟 . 
 

In order to show which method is better among the three methods and how significantly 

the Refined Generalized methods improved the refined ones specially the RGGS, the 

following table (Table 1) is prepared. Moreover, in order to view graphically how the 

RGGS method converges to the exact solution graphs are sketched as in Fig. 1 for different 

number of iterations. 

 

For the purpose of comparing the computation times by RJ, RGS, and RGGS methods 

which required them to converge, a laptop with Intel processor of 1.60 GHz, Installed 

memory of 4 GB, and 64-bit operating system is used. 

 

Table 1: Comparison of the number of iterations and computation times required by RJ 

(Abdullah and Rahman, 2013), RGJ, and RGGS methods to converge. 
 

 

 

 

 

Method 

Number of iterations 

required to converge 

Computation times required to 

converge in seconds 

RJ 160 63.823 

RGJ 72 10.877 

RGGS 21 1.9194 
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                      (a)         (b) 

       Fig.1: The graphs of the approximated solution (AS) obtained by using RGGS and the  

    exact solution (ES)  using the example  provided when the number of      

    iterations is: (a) 7 and (b) 15. 
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It can be observed from Fig. 1 that the 

solutions obtained by RGGS approaches to 

the exact solution as the number of 

iteration increases which ultimately 

converges after 21 iterations by taking the 

tolerance level, 𝜀 = 10−3.   

 

 

DISCUSSION AND CONCLUSION 

Linear systems have important applications 

in many branches of science and 

engineering. In many applications, at least 

some of the parameters of the system are 

represented by fuzzy rather than crisp 

numbers. So it is enormously important to 

develop numerical procedures that would 

appropriately treat fuzzy linear systems and 

solve them.   

 

Salkuyeh (2007) developed the generalized 

Gauss-Seidel method for solving non-fuzzy 

linear systems by using a stationary first 

order iterative method and the splitting 

procedure based on M-matrix and 

concluded that it is more effective than the 

conventional Jacobi and Gauss-Seidel 

methods. 

Genanew  Gofe (2016) also showed that 

the RGGS requires smaller number of 

iterations to converge than the RGS method 

for crisp linear systems of equations.  

The refinement of the generalized Jacobi 

and Gauss Seidel methods yield a better 

result in terms of having a reduced number 

of iterations to converge to the exact value 

for FLS which also worked for crisp 

systems of linear equations. This is due to 

the fact that the embedding mapping given 

by Allahviranloo and Hashemi (2014) is 

one to one and preserves all the properties 

of the original matrix. 

The RGGS method is the best method from 

the rest methods considered since it 

requires the smallest number of iterations 

to converge for all the examples(see Table 

1).In particular it yields a much better 

result than the method proposed by 

Abdullah and Rahman (2013).So, our result 

is in agreement with the above mentioned 

findings. 

In terms of computation time required for 

the methods to converge the RGGS method 

is an efficient method (see Table 1). 

Finally, we recommend that this research 

can be extended to fully fuzzy linear 

systems. 
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