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Abstract 

Analysis of steady laminar boundary layer flow past a moving plate in a viscous 

incompressible fluid with the presence of thermal radiation has been presented in this 

paper. The cases when the plate and the fluids moves in the same direction and reverse 

to each other with species concentration are considered for the present study. The 

governing partial differential equations are transformed into ordinary differential 

equations using similarity transformations, which are more convenient for numerical 

computations. The transformed ordinary differential equations are then solved 

numerically by the Keller box method. Some numerical results obtained are compared 

with previously reported cases available from the literature and they are found to be in a 

good agreement. In addition to this, a parametric study is performed in the investigation 

to illustrate the influence of various parameters on the velocity, temperature and 

concentration profiles. 
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Nomenclature 

Cw species concentration at the wall 

C∞ species concentration far from the surface 

cp specific heat capacity 

F dimensionless velocity 

f dimensionless stream function 

G        dimensionless temperature  

H        dimensionless concentration  

k thermal conductivity 

k
∗
 mean absorption coefficient 

P r Prandtl number 

Sc Schmidt number 

T temperature 

T∞ temperature of the fluid far away from the wall 

Tw temperature at the wall 

r ratio of stream velocity to composite reference velocity 

U composite reference velocity 

u velocity component in x-direction 

Uw moving plate velocity 

U∞ free stream velocity 

v velocity component in y-direction 

qr radiative heat flux 

 

Greek symbols 

α     thermal diffusivity 

ν      kinematic viscosity 

ρ   density 

η      transformed variable 

ψ stream function 

    σ
∗       

Stefan-Boltzmann constant 

 

 

INTRODUCTION 

Investigation of steady flow of 

incompressible fluid flow has attracted 

considerable attention in recent years due to 

its vital role in numerous engineering 

applications, industrial manufacturing 

processes such as hot rolling, wire drawing, 

glass-fiber, drawing of plastic films, metal 

and polymer extrusion and metal spinning. 

Furthermore, study of boundary layer  

 

behavior over a moving surface in a parallel 

stream has important practical applications 

such as in aerodynamic extrusion of plastic 

sheets, the cooling of an infinite metallic 

plate in a cooling bath, the boundary layer 

along material handling conveyors, the 

boundary layer along a liquid film in 

condensation processes, paper production 

and others. On the other hand, convective 

heat transfer with radiation studies are very 

important in processes involving high 
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temperatures such as gas turbines, nuclear 

power plants, and thermal energy storage 

and so on. But very little is known about 

the effects of radiation on the boundary 

layer. 

Investigators encounter actually a wide 

variety of challenges in obtaining suitable 

algorithms for computing flow and heat 

transfer of viscous fluids numerically and 

analytically. The behavior of steady 

boundary layer flow over a moving flat 

surface with constant velocity was first 

presented by Sakiadis (1961). Significant 

differences were found between this 

behavior and the behavior of the boundary 

layer in a moving fluid over a steady flat 

surface, considered by Blasius (1908). 

Bataller (2008) investigated classical 

Blasius flat-plate flow in fluid mechanics in 

the presence of thermal radiation showing 

the Prandtl number tends to reduce the 

thermal boundary layer thickness along the 

plate. The boundary layer flow on a moving 

flat surface to a parallel free stream, and the 

case when the surface and the free stream 

move in the same direction with constant 

velocity was analyzed by Abdelhafez 

(1985). Furthermore Afzal (1993) analyzed 

the case when the wall and the free stream 

move in opposite directions, and showed 

that dual solutions exist. In addition Tsou 

(1967) made an experimental and 

theoretical treatment of the boundary layer 

flow on a continuously moving surface. 

They concluded that measurements of the 

laminar velocity field are in excellent 

agreement with the analytical predictions. 

Consequently they pointed out that 

analytically describable boundary layer on a 

continuous moving surface is a physically 

realizable flow. Ishak et al (2009) 

scrutinized the boundary layer  flow on a fixed 

or moving surface parallel to a uniform free 

stream with constant surface heat flux 

investigating dual solutions exist when the 

sheet and the free stream move in the 

opposite directions. Patil et al. (2009) 

considered the steady, laminar mixed 

convection flow over a continuously moving 

semi infinite vertical plate due to the 

combined effects of thermal and mass 

diffusion in the presence of internal heat 

generation or absorption and an n
th

 order 

homogeneous chemical reaction between 

the fluid and the diffusing species. They 

solved numerically the coupled nonlinear 

partial differential equations using implicit 

finite difference scheme in combination with 

quasilin earization and analysed the profile of 

velocity, temperature and concentration with 

different parameters. Anilkumar (2011) 

obtained the non-similar solution of an 

unsteady laminar mixed convection on a 

continuously moving vertical plate by taking 

into account the effect of viscous dissipation 

for both accelerating and decelerating free-

stream velocities. He demonstrated that the 

skin friction and heat transfer coefficients 

are significantly affected by the time 

dependent free-stream velocity 

distributions. 

 

A numerical study of the momentum and 

heat transfer of an incompressible fluid past 

a parallel moving sheet based on composite 

reference velocity U was examined by 

Cortell (2008) and found that the direction of 

the wall shear changes in an interval 0 ≤ 𝑟 ≤
1 and an increase of  the parameter r yield an 

increase in temperature. Additionally, same 

authors (Cortell (2008) analyzed  the effect 

of thermal radiation on the laminar boundary 

layer about a flat-plate in a uniform stream 

of fluid (Blasius flow), and about a moving 

plate in a quiescent ambient fluid (Sakiadis 

flow) both under a convective surface 

boundary condition depicting that increase 

in Prandtl number P r and the radiation 

parameter NR tend to reduce the fluid 

temperature.  

Lin and Haung (1994) analyzed a horizontal 

isothermal plate moving in parallel or 
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reversibly to a free stream where similarity 

and non-similarity equations are used to 

obtain the flow and thermal fields. Further, 

Muthucumaraswamy and Janakiraman 

(2006) investigated the effect of thermal 

radiation on unsteady free convective flow 

over a moving vertical plate with mass 

transfer in the presence of magnetic field. 

They considered gray, absorbing-emitting 

radiation but a non-scattering medium fluid 

and used Laplace-transform technique to 

solve the problem.  

Cortell (2007) gave suitable solutions to the 

classical Sakiadis flat-plate flow in an in 

compressible fluid in the presence of 

thermal radiation. Makinde (2011) applied 

similarity method to investigate the effect of 

an exponentially decaying internal heat gen-

eration on a boundary layer flow over a 

moving vertical plate with a convective 

boundary condition. Recently, Bachok and 

Ishak (2012) studied steady boundary layer 

flow of a viscous fluid on a moving flat plate 

in a parallel free stream with variable fluid 

properties using Keller-box method. Palani 

et al (2013) have studied a laminar free 

convection heat transfer flow past a semi-

infinite vertical cone with a variable surface 

heat flux by implicit finite difference scheme 

of the Crank-Nikcolson type depicting that 

a greater viscus dissipation of heat causes a 

rise the local skin friction. 

 

Earlier works have used the momentum 

and energy equations to investigate certain 

physical parameters for a problem of flow 

over a moving horizontal plate in a 

moving fluid. Now the present  study is 

considering the thermal radiation and the 

species diffusion in the boundary layer flow 

to analyze the effects of physical 

parameters:  the ratio r of the fluid velocity 

U∞ to the composite reference velocity U ,  

Prandtl number P r, radiation parameter NR 

and the Schemidit number Sc on velocity, 

temperature and diffusion of species. The 

governing partial differential equations are 

transformed into ordinary differential 

equations using similarity transformations, 

which are more convenient for numerical 

computation. The transformed ordinary 

differential equations are then solved 

numerically by the Keller box method. For 

further knowledge refer the books by  Cebeci 

(1984) and Na (1979). 

 

Mathematical Formulation 

Consider a plane surface moving with 

constant velocity Uw in an incompressible 

viscous fluid of uniform stream velocity 

U∞. The plate moves in parallel or reverse 

to the free stream velocity in x-direction. 

The x-axis is taken to be along the plate 

and the y-axis normal to it. The physical 

properties of the fluid are assumed to be 

constant. We assume also that the flow is 

laminar and the surface is maintained at 

constant temperature Tw and the 

concentration of the diffusing species at the 

wall is constant Cw. Further, the surface and 

the free stream are at the same temperature 

or with small temperature difference so that 

the buoyancy effect on flow is negligible. 

Following Afzal (1993), taking into account 

the thermal radiation term in the energy 

equation and using Boussinesq 

approximation invoked for the fluid 

properties, the governing equations for the 

boundary layer flow are: 

 

 
𝜕𝑢

𝜕𝑥
  +

𝜕𝑣

𝜕𝑦
 =0,                                                                                                                (2.1) 

𝑢
𝜕𝑢

𝜕𝑥
 +𝑣

𝜕𝑢

𝜕𝑦
= 𝑣

𝜕2𝑢

𝜕𝑦 2`                                                                                                   (2.2) 
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→ ∞ 

𝑢
𝜕𝑇

𝜕𝑋
+ 𝑣

𝜕𝑇

𝜕𝑦
 = ∝

𝜕2𝑇

𝜕𝑦2 - 
1

𝜌𝑐𝜌
  
𝜕𝑞𝑟

𝜕𝑦
 ,                                                                                 (2.3) 

𝑢
𝜕𝑐

𝜕𝑥
+ 𝑣

𝜕𝑐

𝜕𝑦
  = 𝐷

𝜕2𝐶

𝜕𝑦2`                                                                                                 (2.4) 

with boundary conditions u = uw, v = 0, T = Tw , C = Cw at y = 0 and 

u = u∞ ,T = T∞ ,C = C∞ as y 

Applying the following transformations: 

  

𝜂 = 𝑦  
𝑈

𝑣𝑥
 

1

2    ;
    𝑈 = 𝑢∞+𝑢𝑤;                 𝜓  𝑥,𝑦 = 𝑣𝑈𝑥  

1

2
 𝑓 𝜂 ;   𝑣 = −

𝜕𝜓

𝜕𝑥
 

 

 
Figure 1: Physical model and coordinate system. 

 

 

𝑢 =
𝜕𝜓

𝜕𝑦
;                𝑓 ′ = 𝐹;                     𝐺 𝑛 =

𝑇−𝑇∞

𝑇𝑊−𝑇∞

;     H 𝑛 =
𝐶−𝐶∞

𝐶𝑊−𝐶∞

; 

𝑟 =
𝑢∞

𝑈
;                𝑢 = 𝑈𝑓 ′;                    𝑣 =  

1

2𝑥
   𝑣𝑈𝑥 

1

2
  𝜂𝑓 ′ − , 𝑃𝑟 =

𝑣

𝛼
; 

 

Using the Rosseland approximation [11], the radiative heat flux is 

simplified as 

 

                     𝑞
𝑟=−

4𝜎∗  

3𝑘∗

𝜕𝑇4

𝜕𝑦
                                                                                      (2.5) 

where σ
∗
 and k

∗
 are the Stefan-Boltzmann constant and the mean absorption    c  oefficient 

respectively.  

We assume that the temperature differences within the flow such as the term T 
4
 may be 

expressed as a linear function of temperature. Thus expanding T 
4
 in a Taylor series about 

T∞ and neglecting higher order terms we get:  
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≤ ≤ 

 

𝑇4≅4𝑇 𝑇∞
3

−3𝑇∞.                                                                                                                                                  (2.6)
4  

 

So with regard to equation (2.5) and (2.6), equation (2.3) reduces to  

 

                 𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=  𝛼 +

16𝜎∗𝑇∞
3

3𝑃𝐶𝑝𝑘∗  
𝜕2𝑇

𝜕𝑦2                                                              (2.7) 

 

If we take 𝑁
𝑅=      

𝑘𝑘∗

4𝜎∗𝑇∞3

as the radiation parameter, (2.7) becomes  

                    

           𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑥
 =

𝛼

𝜕𝑦
 
𝜕2𝑇

𝜕𝑦2`                                                                                (2.8) 

 

where                  𝑘
0=

3𝑁𝑅
  3𝑁𝑅+4

 

 

With the similarity variable η and the dimensionless stream function  f (η), continuity equation 

is satisfied and equation (2.2), (2.7) and (2.4) respectively reduce to the following ordinary 

differential equations 

 

𝑓 ′′′ +
𝑓

2
 𝑓 ′′ = 0,    𝑓 0 = 0, 𝑓 ′ 0 = 1 − 𝑟, 𝑓 ′ 𝜂) → ∞,                             (2.9) 

G’’+
𝑘0𝑃𝑟𝑓

2
 𝐺 ′ = 0, 𝐺 0 = 1, 𝐺 𝜂 → 0 𝑎𝑠 𝜂 → ∞,                                       (2.10) 

 

H’’+
𝑆𝑐𝑓

2
 𝐻′ = 0, 𝐻 0 = 1, 𝐻 𝜂 → 0    𝑎𝑠 𝜂 → ∞,                                      (2.11) 

 

 

Method of Solution 

In the present study we treat r as a constant 

and   -1.5 ≤ r≤ 1.5. Observe that if   r     is  

set to 1 in equation2.9, it is the classical 

Blasius flat plate flow problem and for r = 0  

is that of Sakiadis. The flow problems are 

solved by the Keller box method. In order 

to validate our method, we have compared 

with the earlier work as indicated below in  

Tables 1 and 2. Computations have been 

carried out for Pr  (0.7 ≤ P r ≤ 10), Sc(0.23 

≤ Sc ≤ 50), NR (0.5≤ NR≤ 10), and ∆η 

= 0.01. 

The case 0 < r < 1 is when the plate and 

the fluid move in the same direction, while 

opposite direction for r < 0 and r > 1. If r 

< 0, the free stream is directed towards the 

positive x-direction while the plate moves 

towards the negative x-direction. But if r > 

1, the free stream is in the negative x-

direction while the plate moves towards the 

positive x-direction. 
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Table 1: Comparison of velocity gradient F 
′
(0) and temperature gradient G

′
(0) with the  

               earlier work at the moving surface with different Prandtl numbers and k0 = 1 

   

 Backok [5] Present 

P r −F 
′
(0) −G

′
(0) −F 

′
(0) −G

′
(0) 

0.7 0.4437 0.3492 0.443748718 0.3492418986 

1 0.4437 0.4437 0.443748718 0.443748718 

10 0.4437 1.6803 0.443748718 1.6803274499 

100 0.4437 - 0.443748718 5.546202431 

1000 - - 0.4437487181 17.799699308 

 

 

Table  2:  Comparison of velocity gradient F 
′
(0) and temperature gradient G

′
(0) with the  

                 earlier works at the moving surface with P r = 0.7,  k0 = 1 and constant fluid    

                  properties as indicated by Anderson [3]. 

 

Authors −F 
′
(0) −G

′
(0) 

Sakiadis [21] 0.44375   - 

Tsou [24] 0.444  0.3492 

Takhar [23] 0.4439  0.3508 

Pop [18] 0.4445517  0.3507366 

Pantokratoras [17] 0.4438  0.3500 

Present 0.4437487181  0.3492418986 

 

 

RESULTS AND DISCUSSION 

The velocity profile for the parallel flow is 

depicted in Fig. 2 but Fig.3 and 4 present 

that of reversible flow. According to Fig. 2 

the velocity increases for r > 0.5, decreases 

for r < 0.5 and constant for r = 0.5. The 

constant velocity at r = 0.5 shows the 

velocity of the plate and that of fluid is the 

same. This shows that they have the same 

contribution to flow of the system. Fig.3 

and 4 illustrates that the dimensionless 

velocity decreases for negative values of r 

and increases for r > 1 in that of reversible 

flow. The effect of Prandtl number on 

dimensionless temperature profile without 

radiation effect with different value of r is 

presented in Fig.5. The figure demonstrates 

the temperature profile for different values 

of Prandtl numbers when r = 0.1 and r = 

0.9.  

From the figure the authors concluded that 

as the Prandtl number increases      there is a 

decrease in temperature. But increasing the 

value of r increases the temperature when 

Prandtl number is constant and the flow is 

in the same direction. Effect of radiation 

parameter NR on temperature for different 

values of velocity ratio r and Prandtl 

numbers are shown in Fig.6 and 7. The 

figures depict that the dimensional 

temperature profile G increases as the 

radiation parameter NR decreases. To 
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elucidate more, as the mean absorption 

coeffcient k
∗
 decreases the expression   

∂𝜕𝑞𝑟  

𝜕𝑦     
   increases. That means the rate of 

thermal radiation transformed to the fluid 

increases as accordance with an increase of 

fluid temperature.  

Consequently Fig.7 again reveals that as r 

increases the temperature increases keeping 

the Prandtl number P r and radiation 

parameter NR constant. Physically this 

means that the non-dimensional temperature 

is significant when the fluid’s velocity is 

greater than that of the plate with other 

parameters remain the same. 

Fig.8 and 9 express effect of velocity ratio r 

and Schmidt number Sc on the non-

dimensional concentration profile of the 

species diffusion. Fig 8 shows the species 

concentration profile for different values of 

r. The figure reveals that increasing r 

increases the species concentration with 

other parameters fixed. This shows when 

the plate and the fluid move in the same 

direction, increment in the velocity ratio r 

enhances the species concentration. This 

implies that when the free stream velocity 

is greater than that of the plate’s velocity 

the species concentration becomes large. 

This may be due to the fact that velocity of 

the free stream is more but that of the 

plate’s is less and this causes more species 

to concentrate near the surface of the plate. 

Figure 9 describes effect of Schmidt number 

on species concentration. It illustrates that 

increasing Schmidt number decreases 

species concentration. 

 

 
Figure 2:  Velocity profile for some values of r in an interval [0, 1]. 
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        Figure 3:  Velocity profile for some values of r in an interval [−1.5, 0]. 

 

 

 

 

    Figure 4:  Velocity profile for some values of r in an interval [1.1, 1.5]. 
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Figure 5:  Effect of Prandtl number on temperature without thermal radiation  

                  effect. 

     

 

Figure 6: Effect of Prandtl number on temperature with and without thermal radiation  

                 when NR = 0.5r=0.1 
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Figure 7:  Effect of radiation parameter NR  on temperature. When Pr=7 

 

 

Figure 8: Concentration profile for different values of r. 
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Figure 9: Concentration profile for different values of r and Sc. 

 

 

CONCLUSION 

We studied the problem of steady laminar 

boundary layer flow over a moving plate in a 

viscous incompressible fluid with the 

presence of thermal radiation. The governing 

partial differential equations are transformed 

into ordinary differential equations using 

similarity transformations. The transformed 

ordinary differential equations are then 

solved numerically by the Keller box 

method. The numerical results obtained are 

compared with previously reported cases 

available from literature and they are found 

to be in good agreement. From the present 

investigation, we found that: 

 The velocity increases for r > 0.5,  

        decreases for r < 0.5 and constant    

         at r = 0.5. 

 Raising the Prandtl number tends  

            to reduce the temperature of the     

            fluid and rising of Schmidit         

      number will do the same on    

      species concentration. 

 Increasing velocity ratio r   

        increases temperature of the fluid     

       with other parameters constant.     

      That means temperature of the  

        fluid   is higher if the free stream   

        velocity is greater than that of the     

       plate’s velocity keeping other  

       parameters fixed. 

 Raising radiation parameter  

      decreases temperature of the    

      fluid.  

 Increasing the velocity ration r  

                  increases the species concentration. 

This implies that when the free 

stream velocity is greater than that 

of the plate’s velocity, the species 

concentration rises. 
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