Numerical Solution of Second Muluneh D., Gemechis F. & Tesfaye A. 39

ORIGINAL ARTICLE

Numerical Solution of Second Order One Dimensional
Linear Hyperbolic Telegraph Equation

Muluneh Dingeta, Gemechis File* and Tesfaye Aga

Abstract

In this paper, the numerical solution of second order one dimensional linear hyperbolic
telegraph equation using crank Nicholson and fourth order stable centeral difference
methods have been presented. First, the given domain is discretized and the derivatives
of the differential equation were replaced by finite difference approximations and then,
transformed to system of equations that can be solved by matrix inverse method. The
stability and consistency of the method are established. To validate the applicability of
the method, model examples have been considered and solved for different mesh sizes.
As it can be observed from the numerical results presented in Tables and graphs, the
present method approximates the exact solution very well.
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INTRODUCTION

Partial  differential  equations  have
enormous  applications compared to
ordinary differential equations, to mention
some of these: dynamics, electricity, heat
transfer, electromagnetic theory, quantum
mechanics and so on (Erwin, 2006).
Telegraph equations are pairs of coupled,
linear differential equations that describe
the voltage and current on an electrical
transmission line with distance and time.
The telegraph equation is one of the
important  equations of mathematical
physics with applications in many different
fields such as transmission and propagation
of electrical signals (Kajiwara et al., 2010),
vibration systems, random walk theory and
mechanical systems (Chakraverty and
Behera, 2013), etc. The heat diffusion and
wave propagation equations are particular
cases of the telegraph equation. The
telegraph equation is more suitable than
ordinary diffusion equation in modeling
reaction diffusion (Dosti and Nazemi,
2012).

Biologists encounter these equations in the
study of pulsate blood flow in arteries and
in one-dimensional random motion of bugs
along a hedge (Eftimie,2012). Also the
propagation of acoustic waves in Darcy-
type porous media (Heider et al., 2012),
and parallel floes of viscous Maxwell fluids
(Liu et al., 2011) are just some of the
phenomena modeled by the telegraph
equation.

In recent years, different methods have
been applied to find the numerical solution
of the second order one dimensional linear
hyperbolic telegraph equation. To mention
some: Radial basis function approximation
(Saadatmandi and Dehghan, 2010), He’s
variational iteration method (Dehghan et
al.,, 2011), Laguerre-Legendre spectral
collocation method (Tatari and Haghighi,
2014), differential quadrature method
(Jiwari et al., 2014), differential transform
method (Srivastava et al., 2014), method of
weighted residuals (Odejide and Binuyo,
2014), Fibonacci polynomials (Kurt and
Yalcinbas, 2016) and meshless local radial
point interpolation (Elyas and Hamid,
2015).

However, it is necessary to present the
accurate and convergent numerical method
for solving the second order one
dimensional linear hyperbolic telegraph
equation. The fourth order stable central
difference method to find the numerical
solution of the second order self-adjoint
singularly perturbed ordinary differential
equation subject to certain types of
boundary conditions is presented by Terefe
et al. (2016). In this paper, our aim is to
apply the amalgamation of stable central
difference method and the Crank Nicholson
method to find the accurate numerical
solution of the second order one
dimensional linear hyperbolic telegraph
equation.
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Description of the method
Consider the second order one dimensional linear hyperbolic telegraph equation of the
form:

o%u au o%u
o a u_—+fxt 0<x<b,0<t<T 1
s +p (x,1), 1)

subject to the initial conditions:

u(x,0)=fy(x) o
2 (x0)=1,(x

and with boundary conditions:

u(0,t)=go(t)

u(b,t)=g,(t)
where o and £ are given positive constants and we assume that f,(x), f,(X),
go(t) and g, (t) are continuous functions.
To describe the scheme, we divide the interval [0, b]and [0,T]into N and M equal
subintervals of mesh length h and k respectively. Let 0=X; <X <X, <...<Xy =b, and
0=ty <t <t, <...<ty =T be the mesh points with X =X, +ihand t; =t,+ jk, for
i=12,..,Nand j=01,....M

®3)

n 6" j n 5“ i
For the sake of simplicity, useu(x;,t;)=u/ ,ZX—( . J)— al , ou ( . ,)— .
n>1and f(x,t;)=f; I Eq. (1) can be re-written at discretized pomts as:

o) au] i az ]

azl =—a _ﬁu +f(X|! J) (4)

Assume that u(x t) has continuous higher order partial derivatives on the
region[0,b]x[0,T]. Using Taylor's series expansion for any point u(x;,t;)with uniform
step mesh sizes h and k in the direction of x and for fixed t, we have:
o oul h? oty h3 o%u) h4 o) h5 o°u}
Li=ul+h—+— +.. (5)
x 20 ok 3 8x3 T ax4 NS
. . J 2 A2,.] 3 13, 44_1 5 25,
DR AL O e N AT B e ©
OX 21 x> 3 oax® 4l ax* B!
In the same way, using Taylor's series expansion in the direction of t, for a fixed x, we
have:

1 _ oul k2 8%} k3 ou) k4 o*u) k5 o°u)
u; +k—+— +.. (7)
o 2 a2 3o Moot Bl o
. 2 ~2.] 3 A3,,] 4 ~4 ] 5 A5,1]
I_l k6L k_au k oy k o'y, k o’y . (®)
o 202 3ot 4ot 5ot
Adding Egs. (5) with (6), and subtracting Eq. (8) from Eq. (7), gives:
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2,4 j iy
oy Ul —2u8 +u,

i i+ i1, (9)
ox? h? !

aul uitt—uliTt K2 %]

e - + 10
at k6 o 10
200 0t _ond il 12 A
o°uy; _ Y 2U7 +U; k® o™y 1y (11)
atz k2 12 61:4

where: _h* o'l T _ kol T _ okt )
12 o P 120 ot °7 360 ot
. 2.,
From Crank Nicholson finite difference method, average values u;' and 6a_u2, are:
X
i L/ T
u) :g(ui”%ui’ +ul 1) (12)
2] 200+ 20 A2
6u2, _1 6u,2 +8u2, +6u,2 (13)
ox= 3| ox OX OX
Now, substituting Egs. (10) — (13) into Eqg. (4) yields:
ut—2ud +ulT o ut—ud?t o ok? %) k2 o)
+a( ) - -——
k? 2k 6 o 12 ot (14)
2 J+l 2] 2 J—l
+£(u‘+1+u +u’l)=l((3 2 5 Lo )+ £l 4z,
3 3" ox? ox ox?

Where. T4 = _TS _aTZ

Differentiating Eq. (1) successively with respect to t, and evaluated at (x;,t;) we obtain:

3, 2, i 2] :
o°y; =_aa up  poup a o°y; L)y gfij (15)
ot a2 Ta Al o
o*ul ) o%ul oul L0 d%ul a 82 J a % ..
Substituting Egs. (15) and (16) into Eq. (14), gives:
wt-2u) +ul e By j-1 ZUj
k—2 E(ui —U; )+§(u +u +U; )
2 i 2 2 j 2 A2 20 2 J+l 2] 2 _J—l
+aﬂk ou;  ak (6 Ly k< o (8 u; 1 0o°u 6 U; +a uI2 ) (17)

12 ot 12 at ox?’ 1242

_ 2 A2
+fij+ﬂg £l Ko
12 ot 12 ot?

Using the finite difference approximation of Egs. (9) — (11), we have:

2 3" ox : ax2 ox

— fil+g,
o 0%} 1, ia

o) = g M

Loouit g 2u)t et — Ui 4o (18)
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0% o%u) 1 1
atz 8X2 ) k h2 (u|J:i 2uj+l+ulj+l 2u|+1 (19)
qud —2u), +ult —2ui v ul 44
where: 7, h2 0 (64u'J and 7, —h* & a4u,‘
5712 ot ot 5710 a2 ot
oul  o%ul

Putting Egs. (18), (19) and the central finite difference approximation for F p

o%ud
and 2'

into Eq. (17), we get:

j+ I
Ui = 2u + U a , P i P
%Jrﬁ(uiﬁl_ui] l)“Lﬁ(uiﬁl“LUiJ +ui™)

32 ity e - 2u) vyl 20 i +
M(uij”—Zuij+uij_l)+%ﬂ<(uij+l T
T 24 24h

i+1 |+1

—2ut*t oult pudit —ul; )—W(ul'jl1 ud, +ultt 20+ 40)
O TR RN E NI G APy N Sacl
12 ot 128t

where:

e L o%u) +ia5uij +(a2+ﬂ) o'y P o°u)
! 360 ot® 120 o 144 o* 72 ot
h%k? & 0%} az a“ ,J 1 0%

EEVRTS PR )N 36 ox’ )

Rearranging Eq. (20), gives the recurrence relation'
10+ ak j+l i 1 o Sﬁ + aﬁk ak )u.jJrl

2an? 1 TNE T T 1 6h2 12" 24 10
W0+ak a1 2 1 et 1

24h2 i+l =W i1+ ( _) Ui
10-ak —1+ a 58 5 a_+ aﬂk ak Ky, w4

ulT + (—
oanz NI T Ten? 12 24 1on?

_ak _ 2 2
124:2‘" ui{‘11+fi1+0;k2 ;fi ';2; fl+T)
where: T =z, .

Eq. (21) can be re-written as:

Aultt 4 Bul ™+ Ault =cul ) + DU +cul, + Eult A Ful Tt 4 EUT A HY 4T (22)

K iyl (20)

2 2 Uit

43
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for i=12,3,..,N-1 and j =0,,2,...M -

where A=—10+02[k, a+% = 2 aﬂ’k+ ok ,
24h k2 2k 12 6h2 12 24  12h2
1 2 g 1 af
6h?’ k2 6 302 6
:10—ak F=_—1 ﬂ_%_i__ a,b’k ak
24h% K2 2k 12 eh? 12 24 1on?
and Hij=fij+ﬂ£fJ K& o

12 a " 1242 v
But, for j =0, from Eq. (22), we get:

Aul | +Bul + Aut, =Cul, + DUl +cul, + Eurl + Fut + Eul + HYP (23)
Using the initial condition given in Eq. (2) and the relations with Eq. (10) at j=0
we have:

l u—l
2k
From Eq. (24), we get the value for u;_ 1, u; tand u,+1, and then putting these values

into Eq. (23) and then, rearranging, yields:

—(X 0)= = fi(x) (24)

(A—E)ul, +(B—F)ul+ (A-E)ul, =Cu, + Dul +Cu?, —2k(E L auls |

(25)
au? au
1 4E

F I+l)+H0
ot ot

Fori=123,..,N-1.
Hence, Egs. (22) and (25) gives system of equations which can be solved by matrix
inverse method.
To apply the matrix inverse method, we considered the schemes given in Egs. (22)
and (25) which can be re-written as a matrix vector form of:

M xI* =l (26)
where: M =[m;] a square matrix of order (N —1)x(N —1), with x1*t and r’are column

matrices and it can be expressed for both cases as:
Case-l: using Eq. (25), for j=0, i=1 2, ..., N=1, we have:

_ . 1 0
B-F A-E 0] 0 0] U h
1 0
A-E B-F A-E 0 0 ub )
0 A-E B-F A-E : : :
M=| . . . . . S oxt=| D |and =
_ _ _ 1 0
: A-E B-F A-E uy .
0 0 A-E B-F 1 0
- - L UN-1 | L 7IN-1 |

where: For i=1,
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ou?

aU aUO

0 0 0 0 2 0 1
m =Cu, + Du +CU - 2k(E—+F—+E—=)+H; - (A-E)ug,
1 2 ! 0 ( ot ot at) ! ( )0

0 0
Fori=23...,N-2 7 =<3ui°+1+Dui°+0u?_1—2k(E%+Fai+Eatgt+l)+ HO
and for i=N-1,
0 0 0
72 = Cud + DUl +Cul,_, —2k(E N2 , g UNa g a;tN )+ H —(A—E)Y

Case-Il: using Eq. (22), for j=12,... M-1and i=1 2, ..., N-1, we have:

_ _ [+l ]
B AOO .. 0 u” !
B A O 0 ul* n
0 A B A - ; : : :
M=, T I . |andr)=
1 .
B A Ui My
0 0 A B 1 j
- - _ul{ltl_ _’7r{171_

where: 771 =Cul +Du/ +Cul +Eui? + Ful T+ Eul T+ HY — AUl fori=1
+Eul +Ful T+ Bul T+ H) ) for =230 N =2

CuI l+Du +CuI+l i+l

nd_ =cCul_,+Du}_, +Cul +Eult+ Fuld +EulL + HY L - At fori= N -1

A square matrix M =[m;] to be strictly diagonally dominant if for every row, the

magnitude of the diagonal entry in a row is larger than the sum of the magnitude of all the

non-diagonal entries in that row, that is: |mii|>2|mij| for all 1<i<N-1, where m
j#i

denotes the entry in the i row and jth column. And we know that if the matrix

M =[my] is strictly diagonally dominant matrix, then M is invertible.

2
For j=0, |B- F|—£+% —+— and |A-E|= ‘ i
6 6
this implies |B—F|>|A—E|; for i=landi=N-1.
2
and |[B—F|= %+—+— and 2|A-E|= ‘ 52.
6 3n* 6 3h

Thus,|B—F|>2|A—E|; for i=2,3...,N-2,
a 58 o apk 10+ ak

+
k2 2k 12 12 24 12h2

For j=1,2,...,M; |B|=

| |_‘ 10+ ak
2402
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which implies |B|>|A]; for i=1andi=N-1,

Tk 12 T2 T o T e

which shows that |B|>[2A, for i=2,3, ..., N-2
Thus, matrix M is strictly diagonally dominant matrix. Thus, matrix M is invertible.

2
|B| 1 a +%+a_+%+10+ak and |2A|:‘_12;h(§k ,

Stability Analysis and Consistency of the method

The Von Neumann stability technique is applied to investigate the stability of the proposed
method. Such an approach has been used by many researchers like (Rashidinia et al., 2013,
Gemechis et al., 2016 and Shokofeh and Rashidinia, 2016). We assume that the solution of

Eq. (4.22) at the grid point U(X;,t;) is given by:

ul = leP? @7)
where p=+/-1, @ is the real number and ¢ is the complex number.
Now, putting Eq. (27) into the homogenous part of Eq. (22), gives:

Aé/jJrle(i—l) po + Bé/jJrleip& + A§j+le(i+l) po _ Cé/je(i—l) pé + ngeipe +
ngeipe n E;jfle(m) po | Fé/j—leipe n Egj—le(i—l) po

This implies:

1160 (peP? 1 B+ AeP?) 1 el (—Ce P! — D - CeP?) + ¢ 1P (—EeP? — F —Ee P?) =0
Since, the value of p = J-1 and e*P’ =cosO+ psin@, the above equation can be written:
1P (2Acos 0+ B) + ¢ el (—2C cos @ — D) + ¢ Y (—2Ecos—-F) =0 (28)
Dividing both sides Eq. (28) by ¢ /"%’ we obtain:

?(2Ac0s 0+ B) + ¢ (—2C cos&— D)+ (—2E cos6—F) = 0 (29)

Since, cos & :1—25in2(§) , Eq. (29) is written in the form of:
PC?2+QC+R=0 (30)
where:
5.0 5.0
P=2A+B-4Asin (E)' Q=-2C-D+4Csin (E) and
5.0
R=-2E-F +4Esin (E)

. . A . 1+z .
Using Routh-Hurwitz criterion and the transformation ¢ = lL into Eqg. (30), we have:
-z

2
P(“—Z) +Q(1+—Zj+ R =0, which is reduced to:
1-z 1-z

(P-Q+R)z?+2(P—R)z+(P+Q+R) =0 (31)



Numerical Solution of Second Muluneh D., Gemechis F. & Tesfaye A. 47

The necessary and sufficient condition for |§| <1, from Eq. (31) is:
P-Q+R>0, P-R>0 and P+Q+R>0. (32)
From Eq. (30), we have:

8 . ,(0) a’+28 4
P-Q+R=—=sin"| — |+ +—
Q 3h2 [2) 3 k?
1 pk
P-R= sm +—-+2—-) and 33
a( () " 12) (33)

P+Q+R:h—25in2(§)+ﬂ

Since, « and S are positive real constants and from Eq. (33), it is clearly observed that

the inequality of Eq. (32) are satisfied for any values of 8. Thus, the proposed method is
stable for the second order one dimensional linear hyperbolic telegraph equation.
To show the consistency of the method, expand Eq. (4) in Taylor series and replace the
derivatives involving x and t for the relation:
2] i 2]
o +aai+,8uij N Y
ot2 ot ox?

and then we drive a local truncation error. The truncation errors of the proposed method,
using Egs. (9) — (13) given for the one dimensional linear hyperbolic telegraph equation is:

1 o v (@)l ap S

T =k
360 o 120 o° | 144 ot | 72 at3
(34)
_h%k? a(a“ J) o* o' 1))_ (ia“uij
144 ot o at? 36 ox*

Thus, the right hand side of Eq. (34) vanlshes as h—0 and k—0 and impliesT —0.
Hence, the scheme is consistent with the order of O(k* +h?k?+h?). Therefore, the
scheme developed in Eq. (22), is convergent.

Numerical Examples and Results
To demonstrate the applicability of the method, two model examples of the one -
dimensional linear hyperbolic telegraph equations have been considered.

Example 1: Consider the telegraphic equation of the form:

2 2
a—2+a—u+u=a—+(2 2t +t%)(x—x?)e ™t + 2%
otc ot x>
subject to the initial conditions: u(x,0)=0, %U(X,O):O for 0<x<1
and the boundary conditions: u(0,t) =0, u(Lt)=0, t>0

The exact solution is given by u(x,t) = (x—x?)t%e™
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Table 1: Point wise absolute and root mean square errors for Example 1 att =0.01

X Present method Odejide and Binuyo, (2014)
0.00 0.0000 0.0000

0.25 1.2454e-09 3.6735633e-07

0.50 1.6758e-09 4.8980846e-07

0.75 1.2454e-09 3.6735635e-07

1.00 0.0000 0.0000

RMS 2.6832e-09 3.193160467e-07

Table 2: Point wise and maximum absolute errors for Example 1, in the
region (x,t) €[0,1]x[0,1]

X t h=k=025  h=k=0125 h=k=00625
025 025 5050304  9.8387e-05 2.0727e-05
05  8.9854e-04  3.1433¢-04 7.93276-05
075  18188e03  4.8147e-04 1.2420e-04
05 025  95221e04  25020e-04 6.5151e-05
05  77531e-04  3.2036e-04 9.5877¢-05
075  24344e03  B8.1746e-04 2.1688e-04
Max. Abs. 5 4344e-03 8.1746¢-04 2.1688¢0-04

errors

48
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Figure 1: The physical behavior of Example 1 at different mesh sizes.
Example 2: Consider the telegraphic equation of the form:

82u ou 62U 2 2 2 3 2
—+20—+25u = —+ (6t +60t°)(x“ (1-x)°) -t (12x° -12x+2
o & ™ ( Y(X“(@=x)7) —t%( )

u(x,0)=0
subject to the conditions: u;(x,0)=0 ; 0<x<landt>0
u(0,t)=0=u(Lt)

The exact solution is given by u(x,t) = t3x*(1—x)?

Table 3: Pointwise, maximum absolute and root mean square errors for Example 2

(%, t5) h=k=0.2 h=k=0.1 h=k =0.05
(0.2,0.2) 5.4350e-05 1.2885e-05 3.9343e-06

(0.4, 0.4) 4.2612e-04 1.1950e-04 3.2055e-05

(0.6, 0.6) 8.4846e-04 2.3539¢-04 6.1170e-05

(0.8, 0.8) 3.0432e-04 7.8122e-05 1.9923e-05

Max. Absolute errors  1.6476e-03 4.9860e-04 1.2690e-04

RMS 1.5581e-03 6.7579e-04 2.5208e-04
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Figure 2. Absolute pointwise errors decreases as the number of mesh sizes decreases
for Example 2.
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DISCUSSION AND CONCLUSION

In this paper, Crank Nicholson and fourth
order stable central finite difference
methods are used to obtain the scheme for
solving the second order one-dimensional
linear hyperbolic telegraph equation. First,
the given domain is discritized and the
derivatives of the partial differential
equation are replaced by finite difference
approximations and then, transformed to
system of equations which can be solved
by matrix inverse method. The stability and
consistency of the method is well
established. To validate the applicability of
the method, two model examples have been
considered and solved at different mesh
sizes of h and k.

As it can be observed from the numerical
results presented in Table 1, the present
method approximates the exact solution
very well. From Tables (2) and (3) as the
values of h and k decreases, the accuracy of
the method increases. Figure 1 shows the
physical behavior of telegraph equation for
the solution of Example 1 and also, Figure
2 shows as the values of mesh sizes
decrease, the pointwise absolute error also
decreases. Moreover, results obtained by
presented method is compared with the
results of Odejide and Binuyo (2014), and
it shows, the obtained result is more
accurate.

Therefore, the present scheme that obtained
from the finite difference methods is more
accurate and convergent method for
solving the second order one-dimensional
linear hyperbolic telegraph equation.
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